• Title/Summary/Keyword: Movable boundary

Search Result 33, Processing Time 0.024 seconds

Scalable Quasi-Dynamic-Provisioning-Based Admission Control Mechanism in Differentiated Service Networks

  • Rhee, Woo-Seop;Lee, Jun-Hwa;Yu, Jae-Hoon;Kim, Sang-Ha
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The architecture in a differentiated services (DiffServ) network is based on a simple model that applies a per-class service in the core node of the network. However, because the network behavior is simple, the network structure and provisioning is complicated. If a service provider wants dynamic provisioning or a better bandwidth guarantee, the differentiated services network must use a signaling protocol with QoS parameters or an admission control method. Unfortunately, these methods increase the complexity. To overcome the problems with complexity, we investigated scalable dynamic provisioning for admission control in DiffServ networks. We propose a new scalable $qDPM^2$ mechanism based on a centralized bandwidth broker and distributed measurement-based admission control and movable boundary bandwidth management to support heterogeneous QoS requirements in DiffServ networks.

  • PDF

Word-boundary and rate effects on upper and lower lip movements in the articulation of the bilabial stop /p/ in Korean

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • In this study, we examined how the upper and lower lips articulate to produce labial /p/. Using electromagnetic midsagittal articulography, we collected flesh-point tracking movement data from eight native speakers of Seoul Korean (five females and three males). Individual articulatory movements in /p/ were examined in terms of minimum vertical upper lip position, maximum vertical lower lip position, and corresponding vertical upper lip position aligned with maximum vertical lower lip position. Using linear mixed-effect models, we tested two factors (word boundary [across-word vs. within-word] and speech rate [comfortable vs. fast]) and their interaction, considering subjects as random effects. The results are summarized as follows. First, maximum lower lip position varied with different word boundaries and speech rates, but no interaction was detected. In particular, maximum lower lip position was lower (e.g., less constricted or more reduced) in fast rate condition and across-word boundary condition. Second, minimum lower lip position, as well as lower lip position, measured at the time of maximum lower lip position only varied with different word boundaries, showing that they were consistently lower in across-word condition. We provide further empirical evidence of lower lip movement sensitive to both different word boundaries (e.g., linguistic factor) and speech rates (e.g., paralinguistic factor); this supports the traditional idea that the lower lip is an actively moving articulator. The sensitivity of upper lip movement is also observed with different word boundaries; this counters the traditional idea that the upper lip is the target area, which presupposes immobility. Taken together, the lip aperture gesture is a good indicator that takes into account upper and lower lip vertical movements, compared to the traditional approach that distinguishes a movable articulator from target place. Respective of different speech rates, the results of the present study patterned with cross-linguistic lenition-related allophonic variation, which is known to be more sensitive to fast rate.

Dynamic Model and Governing Equations of a Shallow Arches with Moving Boundary (이동 경계를 갖는 얕은 아치의 동적 모델과 지배방정식)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.57-64
    • /
    • 2022
  • In this paper, the physical model and governing equations of a shallow arch with a moving boundary were studied. A model with a moving boundary can be easily found in a long span retractable roof, and it corresponds to a problem of a non-cylindrical domain in which the boundary moves with time. In particular, a motion equation of a shallow arch having a moving boundary is expressed in the form of an integral-differential equation. This is expressed by the time-varying integration interval of the integral coefficient term in the arch equation with an un-movable boundary. Also, the change in internal force due to the moving boundary is also considered. Therefore, in this study, the governing equation was derived by transforming the equation of the non-cylindrical domain into the cylindrical domain to solve this problem. A governing equation for vertical vibration was derived from the transformed equation, where a sinusoidal function was used as the orthonormal basis. Terms that consider the effect of the moving boundary over time in the original equation were added in the equation of the transformed cylindrical problem. In addition, a solution was obtained using a numerical analysis technique in a symmetric mode arch system, and the result effectively reflected the effect of the moving boundary.

Numerical Prediction of Open Water Performance of Flapped Rudders

  • Pyo, S.W.;Suh, J.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • A low-order potential based boundary element method is applied for the prediction of the performance of flapped rudders as well as all-movable rudders in steady inflow. In order to obtain a reasonable solution at large angles of attack, the location of the trailing wake sheet is determined by aligning freely with the local flow. The effect of the wake sheet roll-up is also included with use of a high order panel method. The flow in the gap of a flapped rudder is modeled as Couette flow and its effect is introduced into the kinematic boundary conditions for flux at both the inlet and the outlet of the gap. In order to validate the present method, the method is applied for a series of rudders and the computational results on forces and moments are compared with experimental data. The effect of the gap size on the forces and moments is also presented.

  • PDF

A Study on Dynamic Provisioning Mechanism for QoS guarantee in DiffServ Networks (DiffServ 망에서 QoS 보장을 위한 동적 프로비저닝 메카니즘 연구)

  • Rhee, Woo-Seop;Lee, Jun-Hwa;Yang, Mi-Jeong;Lee, Il-Woo;Yu, Jae-Hoon;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2B
    • /
    • pp.105-116
    • /
    • 2003
  • The differentiated service architecture is based on a simple model by applying a per-class service in the core node of the network. However, due to the simplified network behavior, the network structure and provisioning were more complicated. If a service provider wants the dynamic provisioning or better bandwidth guarantee, signaling protocol with QoS parameters or admission control method should be deployed in DiffServ network. However, these methods increase the complexity. Therefore, we proposed DPM2 mechanism for admission control in the DiffServ network. In this paper, we describe and survey the admission control methods that are applicable to IP networks and propose also the dynamic provisioning mechanism based on the bandwidth broker and distributed measurement based admission control and movable boundary bandwidth management to support heterogeneous QoS services in differentiated service networks. For the performance evaluation for proposed mechanism, we used ns-2 simulator.

Authoring Personal Virtual Studio Using Tangible Augmented Reality (탠저블 증강현실을 활용한 개인용 가상스튜디오 저작)

  • Rhee, Gue-Won;Lee, Jae-Yeol;Nam, Ji-Seung;Hong, Sung-Hoon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.77-88
    • /
    • 2008
  • Nowadays personal users create a variety of multi-media contents and share them with others through various devices over the Internet since the concept of user created content (UCC) has been widely accepted as a new paradigm in today's multi-media market, which has broken the boundary of contents providers and consumers. This paradigm shift has also introduced a new business model that makes it possible for them to create their own multi-media contents for commercial purpose. This paper proposes a tangible virtual studio using augmented reality to author multi-media contents easily and intuitively for personal broadcasting and personal content generation. It provides a set of tangible interfaces and devices such as visual markers, cameras, movable and rotatable arms carrying cameras, and miniaturized set. They can offer an easy-to-use interface in an immersive environment and an easy switching mechanism between tangible environment and virtual environment. This paper also discusses how to remove inconsistency between real objects and virtual objects during the AR-enabled visualization with a context-adaptable tracking method. The context-adaptable tracking method not only adjusts the locations of invisible markers by interpolating the locations of existing reference markers, but also removes a jumping effect of movable virtual objects when their references are changed from one marker to another.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Development of Meta Model of Transfer Function for Wavemaker of Deep Ocean Engineering Basin (심해공학수조 조파기 전달함수 근사 모델 개발)

  • Seunghoon, Oh;Eun-Soo, Kim;Sungjun, Jung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.471-482
    • /
    • 2022
  • This study aims to investigate the characteristics of wave generation in a deep ocean engineering basin and to develop a meta-model of the transfer function of the wavemaker that reflects the geometric characteristics of the deep ocean engineering basin. To this end, the two-dimensional frequency domain boundary element method was applied to achieve an efficient analysis that reflects the geometric characteristics of the deep ocean engineering basin. The developed numerical method was validated through comparison with the analytical solution. Numerical analyses were conducted for the boundary value problem of the wavemaker according to various periods and the positions of the movable bottom. The numerical results were used to investigate the effect of the geometric characteristics of the deep ocean engineering basin on the transfer function of the wavemaker, and the effect of depth on wave generation was checked by changing the position of the movable bottom. To efficiently utilize the various results of the boundary element method, a meta-model, an approximate model of the transfer function of the wave maker, was developed using a thin plate spline interpolation model. The validity of the developed meta-model was confirmed through a comparison of the results of the model tests.