• Title/Summary/Keyword: Mouth Detection

Search Result 154, Processing Time 0.023 seconds

Shoreline Changes Interpreted from Multi-Temporal Aerial Photographs and High Resolution Satellite Images. A Case Study in Jinha Beach (다중시기 항공사진과 KOMPSAT-3 영상을 이용한 진하해수욕장 해안선 변화 탐지)

  • Hwang, Chang Su;Choi, Chul Uong;Choi, Ji Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.607-616
    • /
    • 2014
  • This research is to observe the shoreline changes in Jinha beach over the 50 years with aerial photographs and satellite images. The shoreline image feature was retrieved from the corrected images using wet and dry techniques and analyzed by DSAS from the statistical point of view. From 1967 to 1992, the mouth of Hoeya River was severely blocked and the northern shoreline off Jinha beach was eroded. The blockade of river mouth seemed to have been eased along with the completion of the dike, but soil continued to be deposited along the high sea away from the river month. Compared to the past, a layer of sediment has been formed off the northern coastline while the southern coastline has eroded. At least in the region subject to this research, the construction of a training dike is to blame. On top of that, a mere combination of dredges and artificial nourishment is not enough to take under control the changing shorelines properly. Thus, it is necessary to devise a more fundamental solution by taking into account reasons behind sediment from the river area that could change the shorelines besides the costal environment.

Status of Research and Development of Foot and Mouth Disease Diagnosis (Review) (구제역 진단법 연구개발 현황 (총설))

  • Kwak, Kyeongrok;Choi, So-Young;Kim, Eunyoung;Hwang, Choon Hong;Lee, Sung-Jin
    • ANNALS OF ANIMAL RESOURCE SCIENCES
    • /
    • v.28 no.2
    • /
    • pp.78-96
    • /
    • 2017
  • Foot-and-mouth disease (FMD) is a infection that can easily spread when it occurs and causes serious economic damage because of the existence of multiple serotypes of the virus and extreme contagiousness. The most effective method in preventing the transmission of FMD virus (FMDV) is the culling of livestock and additional vaccination in the other areas depending on the spreading rate and situation. Diagnostic methods are utilized not only for the definite diagnosis of FMD but also for identification of serotype, and confirmation of antibody production after vaccination. Although many methods have been developed to diagnose, they are not still enough to detect accurately the disease in a short time. Therefore, it has been needed new diagnostic methods improved from existing methods. Previous methods were based on the enzyme-linked immunosorbent assay (ELISA) as a serological diagnostic method, or polymerase chain reaction (PCR), which is a molecular genetic method. The recent technology has been performing about the combination of both methods and how to make it faster, less costly, more sensitive and accurate way.

Block Based Face Detection Scheme Using Face Color and Motion Information

  • Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.461-468
    • /
    • 2003
  • In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.

Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction (인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정)

  • Park Sung-Kee;Park Mignon;Lee Taigun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.

A Study on Automatic Detection of The Face and Facial Features for Face Recognition System in Real Time (실시간 얼굴인식 시스템을 위한 얼굴의 위치 및 각 부위 자동 검출에 관한 연구)

  • 구자일;홍준표
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.379-388
    • /
    • 2002
  • In this paper, the real-time algorithm is proposed for automatic detection of the face and facial features. In the face region, we extracted eyes, nose, mouth and so forth. There are two methods to extract them; one is the method of using the location information of them, other is the method of using Gaussian second derivatives filters. This system have high speed and accuracy because the facial feature extraction is processed only by detected face region, not by whole image. There are some kinds of good experimental result for the proposed algorithm; high face detection rate of 95%, high speed of lower than 1sec. the reduction of illumination effect, and the compensation of face tilt.

Face Detection in Color images (컬러이미지에서의 얼굴검출)

  • 박동희;박호식;남기환;한준희;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.236-238
    • /
    • 2003
  • Human face detection is often the first step in applications such as video surveillance, human computer interface, fare recognition, and image database management. We have constructed a simple and fast system to detect frontal human faces in complex environment and different illumination. This paper presents a fast segmentation method to combine neighboring pixels with similar hue. The algorithm constructs eye, mouth, and boundary maps for verifying each fare candidate. We test the system on images in complex environment and with confusing objects. The experiment shows a robust detection result with few false detected fates.

  • PDF

Face Region Detection Algorithm using Euclidean Distance of Color-Image (칼라 영상에서 유클리디안 거리를 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-sup;Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.79-86
    • /
    • 2009
  • This study proposed a method of detecting the facial area by calculating Euclidian distances among skin color elements and extracting the characteristics of the face. The proposed algorithm is composed of light calibration and face detection. The light calibration process performs calibration for the change of light. The face detection process extracts the area of skin color by calculating Euclidian distances to the input images using as characteristic vectors color and chroma in 20 skin color sample images. From the extracted facial area candidate, the eyes were detected in space C of color model CMY, and the mouth was detected in space Q of color model YIQ. From the extracted facial area candidate, the facial area was detected based on the knowledge of an ordinary face. When an experiment was conducted with 40 color images of face as input images, the method showed a face detection rate of 100%.

  • PDF

Sleepiness Determination of Driver through the Frequency Analysis of the Eye Opening and Shutting (눈 개폐의 빈도수를 통한 운전자의 졸음판단 분석)

  • Gong, Do-Hyun;Kwak, Keun-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.464-470
    • /
    • 2016
  • In this paper, we propose an improved face detection algorithm and determination method for drowsiness status of driver from the opening and closing frequency of the detected eye. For this purpose, face, eyes, nose, and mouth are detected based on conventional Viola-Jones face detection algorithm and spatial correlation of face. Here the spatial correlation of face is performed by DFP(Detect Face Part) based on seven characteristics. The experimental results on Caltect face image database revealed that the detection rates of noise particularly showed the improved performance of 13.78% in comparison to that of the previous Viola-Jones algorithm. Furthermore, we analyze the driver's drowsiness determination cumulative value of the eye closed state as a function of time based on SVM (Support Vector Machine) and PERCLOS(Percentage Closure of Eyes). The experimental results confirmed the usefulness of the proposed method by obtaining a driver's drowsiness determination rate of 93.28%.

Rotated Face Detection Using Polar Coordinate Transform and AdaBoost (극좌표계 변환과 AdaBoost를 이용한 회전 얼굴 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.896-902
    • /
    • 2021
  • Rotated face detection is required in many applications but still remains as a challenging task, due to the large variations of face appearances. In this paper, a polar coordinate transform that is not affected by rotation is proposed. In addition, a method for effectively detecting rotated faces using the transformed image has been proposed. The proposed polar coordinate transform maintains spatial information between facial components such as eyes, mouth, etc., since the positions of facial components are always maintained regardless of rotation angle, thereby eliminating rotation effects. Polar coordinate transformed images are trained using AdaBoost, which is used for frontal face detection, and rotated faces are detected. We validate the detected faces using LBP that trained the non-face images. Experiments on 3600 face images obtained by rotating images in the BioID database show a rotating face detection rate of 96.17%. Furthermore, we accurately detected rotated faces in images with a background containing multiple rotated faces.

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF