• Title/Summary/Keyword: Mouse skin

Search Result 714, Processing Time 0.022 seconds

Theoretical Model for the Electrical Resistance of Skin (피부의 전기적 저항에 대한 이론적 모델)

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.207-213
    • /
    • 1996
  • The kinetic change of electrical resistance of hairless mouse skin as a function of ionic strength of the bathing medium was determined from impedance measurements. After increasing (decreasing) the ionic strength of the bathing medium, resistance decreased (increased) continuously with time, finally reaching an equilibrium value. We have modelled this process, using nonsteady-state diffusion kinetics. The results show semi-quantitative correlation between theoretically derived and experimentally obtained values. Overall, this work provides further mechanistic insight into ion-conduction through the skin.

  • PDF

Prevention of Ultraviolet B Radiation (280-320 nm) Induced Contact Hypersensitivity by EGb 761 (ICR mouse에 있어 UVB조사로 유도된 접촉 과민반응에 대한 EGb 761의 억제 효과)

  • Choi, Wook-Hee;Ann, Hyoung-Soo;Ahn, Ryoung-Me
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.7-14
    • /
    • 2005
  • Exposure of skin to UVB radiation can cause the induction of inflammation and impairment of contact hypersensitivity(CHS) response. Several studies have shown that polyphenolic compounds isolated from EGb 761 afford protection against UVB. In this study, we demonstrated that topical application of EGb 761, before 1MED(1.4 KJ/$m^2$), 1.5MED (2.1 KJ/$m^2$), 2MED (2.8 KJ/$m^2$) of UVB exposure to ICR mice prevented UVB-induced inflammation and inhibition of the contact hypersensitivity response. The skin-fold swelling from 1MED, 1.5MED, 2MED of UVB exposure highly significantly increased after twice irradiation. Topical application of EGb 761(0.1%, 1%, 4%), 5 days prior to UVB exposure reduced skin thickness compared to non-treated mice. Exposure of shaved abdominal skin of mice to 1MED, 1.5MED and 2MED of UVB radiation resulted in suppression of contact sensitization through the skin to 56.23%, 65.12%, 74.02%, compared to normal unirradiated skin. Topical application of EGb 761(0.1%, 1%, 4%), 5 days prior to or 5 days after exposure to 1MED and 2MED of UVB resulted in protection against suppression of contact hypersensitivity in mouse dorsal skin. These protective effects were dependent on the dose of EGb 761 employed. The present study show that EGb 761 protect UVB-induced inflammation and immune suppression. Also, we suggest that EGb 761 can provide protection from photoimmunosuppression.

Development of Bioavailability Enhancement System for the Skin Permeation Promotion of Psolarea corylifolia Extract (보골지 추출물의 피부 투과 촉진 시스템 개발)

  • Cho, Young-Ho;Ahn, Ghe-Whan;Yang, Seung-Won;Cho, Kwan-Hyun;Kim, Sang-Won;Baek, Ki-Myoung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Psolarea corylifolia extract that contains bakuchiol is known to have anti-microbial, anti-inflammatory and anti-scarring effects. In this study, a vesicles such as liposome, niosome, and transfersome were produced to encapsulate P. corylifolia extract and measured their stability and physiochemical property. The skin permeation and partitioning of P. corylifolia extract in the vesicles were elucidated in nude mouse skin by using Franz diffusion cells after topical application for 24 h. After storage at 25, 40, $70^{\circ}C$, and light, the stability of bakuchiol incorporated into the vesicles was maintained for 30 days. The optimal concentration of P. corylifolia extract entrapped into the vesicles was found to be 5~10%. From the physicochemical studies, after storage at 4, 25, and $40^{\circ}C$, the viscosity and particle size of the vesicles remained in 30~80 cP and the nanosize range for 6 months, respectively. From the permeation experiments, niosome showed a higher amount of bakuchiol permeated through the mouse skin compared to liposome and transfersome after 24 h. From these results, niosome and transfersome could be a good bioavailability enhancement system (BAES) for P. corylifolia extract to improve the skin permeation and stability.

Dermal Stability and In Vitro Skin Permeation of Collagen Pentapeptides (KTTKS and palmitoyl-KTTKS)

  • Choi, Yun Lim;Park, Eun Ji;Kim, Eunje;Na, Dong Hee;Shin, Young-Hee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Collagen pentapeptide (Lys-Thr-Thr-Lys-Ser, KTTKS) and its palmitoylated derivative (pal-KTTKS) have received a great deal of attention as cosmeceutical ingredients for their anti-wrinkle effects. The objective of this study was to evaluate stability and permeability of KTTKS and pal-KTTKS in hairless mouse skin. In this study, a liquid chromatography-tandem mass spectrometric method was developed for the quantification of pal-KTTKS, and used for stability and permeability studies. Stability studies were performed using skin extracts and homogenates. Both KTTKS and pal-KTTKS were rapidly degraded, but pal-KTTKS was more stable than KTTKS. When protease inhibitors were added, the stability of both compounds (KTTKS and pal-KTTKS) improved significantly. In the skin permeation study, neither KTTKS nor pal-KTTKS was detected in the receptor solution, which indicates that neither compound could permeate through the full-thickness hairless mouse skin in the experimental conditions of this study. While KTTKS was not detected in any of the skin layers (the stratum corneum, epidermis, and dermis), pal-KTTKS was observed in all skin layers: $4.2{\pm}0.7{\mu}g/cm^2$ in the stratum corneum, $2.8{\pm}0.5{\mu}g/cm^2$ in the epidermis, and $0.3{\pm}0.1{\mu}g/cm^2$ in the dermis. In conclusion, this study indicated that pal-KTTKS had greater stability and permeability than that of un-modified KTTKS, and may be a useful anti-wrinkle and anti-aging cosmeceutical agent.

Oral Administration of Lactobacillus plantarum HY7714 Protects Hairless Mouse Against Ultraviolet B-Induced Photoaging

  • Kim, Hyun Mee;Lee, Dong Eun;Park, Soo Dong;Kim, Yong-Tae;Kim, Yu Jin;Jeong, Ji Woong;Jang, Sung Sik;Ahn, Young-Tae;Sim, Jae-Hun;Huh, Chul-Sung;Chung, Dae Kyun;Lee, Jung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1583-1591
    • /
    • 2014
  • Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVB-induced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

Photoprotective Effect of Bamboo (Phyllostachys nigra var. henenis Strapf) Leaf Extract against Ultraviolet Radiation-induced Chronic Skin Damage in the Hairless Mouse (자외선 조사 마우스에서 만성 피부손상에 대한 분죽(Phyllostachys nigra var. henenis Strapf)잎 추출물의 효과)

  • Byeon, Jeong-Soo;Lee, Hae-June;Moon, Changjong;Kim, Jong Choon;Jo, Sung Kee;Jang, Jong Sik;Kim, Tae Hwan;Kim, Sung-Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • To evaluate the ability of Bamboo (Phyllostachys nigra var. henenis Strapf) leaf extract (BL) to protect the skin from photodamage, the gross and microscopic changes in the skin of hairless mice and BL-treated mice exposed chronically to ultraviolet (UV) were examined. The skin of the UV-irradiated mice showed characteristic signs of photoaging, such as deep wrinkles across the back, increased epidermal thickeness, numerous cell infiltration, and many enlarged keratinizing cysts. BL-treated mice showed a significantly decreased wrinkling score and lack of proliferation of cysts. By the 22nd week, 88.9% (i.p. with saline) or 60.0% (topical administration with cream base) of the UV-irradiated mice developed at least one tumor. BL delayed tumor onset significantly. BL (i.p.) was also effective in reducing the occurrence of UV radiation-induced skin tumors and reduced the number of tumors per mouse. After 22 weeks of treatment, 37.5% (i.p.) of the mice treated with BL were tumor-free. Tumor multiplicity was reduced by 81.2% (i.p.) in the BL treated groups. It is noted that skin that is chronically exposed to UV is subject to photoaging and photocarcinogenesis and regular use of BL would prevent these photodamaging effects of UV.

Effect of Vehicles and Enhancers on the in vitro Skin Penetration of Aspalatone and Its Enzymatic Degradation Across Rat Skins

  • Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.572-577
    • /
    • 2001
  • The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this studys hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PC that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PC concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped currie. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate > serosal extract > epidermal extract. Estimated first order degradation rate constants were $6.15{\pm}0.14,{\;}0.57{\pm}0.02{\;}and{\;}0.011{\pm}{\;}0.004{\;}h^{-1}$ for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PC and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be nervessary to fully realize the transdermal delivery of the drug.

  • PDF

Combination of red ginseng and velvet antler extracts prevents skin damage by enhancing the antioxidant defense system and inhibiting MAPK/AP-1/NF-κB and caspase signaling pathways in UVB-irradiated HaCaT keratinocytes and SKH-1 hairless mice

  • Van-Long Truong;Yeon-Ji Bae;Ji-Hong Bang;Woo-Sik Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.323-332
    • /
    • 2024
  • Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

Effect of Herb Extracts Mixed with Houttuynia Cordata on Antiatopic Dermatitis in DNCB-Induced BALB/c Mouse (DNCB 유도 BALB/c 생쥐에서 어성초 혼합 한방추출물의 항아토피 효과)

  • Park, Sang-Oh;Park, Byung-Sung;Ryu, Chae-Min;Ahn, Yong-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.175-183
    • /
    • 2012
  • This study was evaluated the antiatopic activity of cream containing a herb extracts mixed with Houttuynia cordata in DNCB-induced BALB/c atopy mouse. The randomized complete block design was done by BALB/c mouse into two groups, of which the control group with atopy and the cream treatment group. It was found that each level of IgE and histamine in blood was significantly decreased in the cream treatment group, compared with the DNCB-induced atopy control group. When the cream was applied to the atopy mouse, it could be observed that its skin recovered to normal condition with the skin surface being clean and smooth without any horny tissue. The results suggest that the application of herb extracts mixed with Houttuynia cordata has an antiatopic activity through a inhibition of histamin emissions with reducing the levels of blood IgE in BALB/C atopy mouse.

Mechanism of Urea Effect on Percutaneous Absorption of Clonidine

  • Byun, Young-Rho;Jeong, Seo-Young;Kim, Young-Ha
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.143-147
    • /
    • 1989
  • The urea effect on skin permeation of clonidine was investigated to reduce a log time and to increase a permeability. ICR mouse skin and human skin were used and were assumed to be a two-layer membrane consisted of stratum corneum and viable epidermis. The urea acted as a skin denaturant and humectant in the whole epidermis. Also it enhanced the skin permeability of clonidine about 3.5 times. On the other hand, it enhanced the skin permeability by acting as a humectant in the viable epidermis. But the urea effect on the whole epidermis was shown to be greater than that on the viable epidermis. Therefore, it was found that the effect of urea was greater on the stratum corneum than the viable epidermis. Variation of enhancing effect according to the concentration of urea was not found in the range of 1% to 20%.

  • PDF