• Title/Summary/Keyword: Mouse neuronal cells

Search Result 146, Processing Time 0.027 seconds

Effect of Gojineumja(Guzhenyinzi) on Neural Tissue Degeneration In Mouse Model of Alzheimer Disease (고진음자(固眞飮子)가 Alzheimer Disease 병태모델의 신경세포 손상에 미치는 영향)

  • Kim, Hyun-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.2
    • /
    • pp.31-46
    • /
    • 2009
  • Objectives : This experiment was designed to investigate the effect of Gojineumja(Guzhenyinzi, GJEJ) on damaged neural tissue in cultured glial cells and in the mouse brain tissue. Methods : The effects of the GJEJ on activation of astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide were investigated. The effects of the GJEJ on levels of glial fibrillary acidic protein(GFAP)-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine were investigated. Results : 1. GJEJ reduced levels of activated astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide. 2. GJEJ reduced levels of GFAP-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine. Conclusions : The present data. suggest that GJEJ may have a protective function of neuronal and non-neuronal cells in damaged neural tissue caused by AD-like stimulations. Further studies on identification of effective molecular components of GJEJ and their interactions with damaged neural cells would be important for understanding molecular mechanism and may be further applicable for the development of therapeutic strategies.

  • PDF

Dopaminergic neuronal development in the embryonic mesencephalon of mouse

  • Kim, Mun-Ki;Lee, Si-Joon;Won, Chung-Kil
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.4
    • /
    • pp.203-207
    • /
    • 2020
  • This study presents neuronal migration pattern of dopamine (DA) neurons generated in separate regions occupying the ventral mesencephalic territory. A single pulse 5-bromodeoxyuridine (BrdU) was administered at embryonic day (E)10-E15. Distribution of tyrosine hydroxylase (TH) positive cells was determined at E13-postnatal day 0 (P0) by immunohistochemistry. BrdU positive cells labeled at E10 were spread out uniformly in the mesencephalon from E13 to E15, migrating through dorsal and ventral routes at E17 and P0. TH expression labeled at E10 was observed at E13 in the ventromedial region and clearly formed in the ventral tegmental area (VTA) at E15. At E17, TH expression in the substantia nigra (SN) was observed in the ventrolateral region, spreading more outward of the mesencephalon at P0. Generation of TH-positive cells labeled at E13 was also observed in VTA and SN of the mesencephalon at E17 and P0. The expression of these cells labeled after E15 was markedly decreased. These results demonstrated that an almost complete primary structure of DA neuron was formed at the early embryonic stage in the ventral mesencephalon, showing the most active neuronal migration was occurred at E13-E17.

Expression of Mouse Synaptobrevin (VAMP) Gene in E. coli and its Cleavage by the Clostridium botulinum type B Toxin (Synaptobrevin (VAMP)유전자의 대장균에서의 발현 및 Clostridium botulinum type B 독소에 의한 절단)

  • 정현호;양기혁;이상달;양규환
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.417-421
    • /
    • 1997
  • Synaptobrevin is a kind of vesicle associated membrane proteins (VAMPs) which plays a secretary role in the neuronal synapse and was recently known as the biochemical target of botulinum neurotoxin type B. The structural gene of the synaptobrevin was cloned from mouse brain using RT-PCR technique and was seqrtenced. The deduced amino acid sequence showed that the synaptobrevin protein from mouse brain is exactly the same with that of the rat brain in the amino acid level. The synaptobrevin gene was subcloned into pET3a vector and expressed in E. coli. The molecular weight of the recombinant protein was 19 kDa as expected. Moreover, when the recombinant synaptobrevin protein was incubated with the native neurotoxin of Clostridium botulinum type B, it was cleaved by the toxin in a time dependent manner. This implies that the recombinant synaptobrevin protein and the native toxin are reacted in the same way as the native synaptobrevin did in the neuronal cells.

  • PDF

Regulatory roles of ganglioside GQ1b in neuronal cell differentiation of mouse embryonic stem cells

  • Kwak, Dong-Hoon;Jin, Jung-Woo;Ryu, Jae-Sung;Ko, Kinram;Lee, So-Dam;Lee, Jeong-Woong;Kim, Ji-Su;Jung, Kyu-Yong;Ko, Ki-Sung;Ma, Jin-Yeul;Hwang, Kyung-A;Chang, Kyu-Tae;Choo, Young-Kug
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.799-804
    • /
    • 2011
  • Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.

Clinical Effect through Histological Characteristics of Focal Ischemia Region (뇌허혈성 부위의 조직학적 특성을 통한 임상적 영향)

  • Lee, Tae-Hoon
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.39-43
    • /
    • 2019
  • Mouse embryonic stem cell could show an substitutional materials of cells of neuron differentiation, positively increasing their effectiveness in the treatment of nervous symptom. We examined that mouse embryonic stem cells (mESCs) can be induced to undergo neuronal differentiation. After neuronal induction, the phenotype of mESCs changed towards neuronal morphology and mESCs were injected into the lateral ventricle of the experimental animal brain. Transplanted cells migrated to various parts of the brain and ischemic brain injury by middle cerebral artery occlusion (MCAO) increased their migration to the injured cortex. Intracerebral grafting of mESCs mostly improve sensory and motor nervous system of neurological injury in focal cerebral rats.

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF

Distribution of Calretinin in the Superficial Layers of the Mouse Superior Colliculus: Effect of Monocular Enuclection

  • Yang, Hye-Won;Jeon-Jeon, Chang-Jin
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.389-393
    • /
    • 1998
  • We localized a calcium-binding protein, calretinin, in the superior colliculus of the mouse and studied the distribution and effect of eye enucleation on the distribution of this protein. Calretinin was localized with immunocyto-chemistry. A dense plexus of anti-calretinin-labeled fibers was found within the superficial layers. The highest density was found in the deep superficial gray layer. Monocular enucleation produced an almost complete reduction of calretinin-immunoreactive fibers in the superficial layers of the superior colliculus contralateral to the enucleation. Furthermore, many calretinin-labeled cells appeared in the contralateral superior colliculus. These newly appeared neurons had small oval or round cell bodies. The results demonstrate that calretinin identify unique neuronal sublaminar organizations in the superior colliculus of the mouse. They also suggest that the retinal projection may control in part the content of calretinin in some neurons in the superficial layers of the mouse superior colliculus.

  • PDF

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

The Neuroprotective Effects of InSamYangYoung-tang(Renshenyangrongtang) on Aβ-induced Damages in Mice (인삼양영탕(人蔘養榮湯)이 Aβ를 처리한 PC12 세포와 생쥐의 손상 뇌신경조직에 미치는 영향)

  • Jang, Young-Joo;Jung, In-Chul;Lee, Sang-Ryong
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.1
    • /
    • pp.109-124
    • /
    • 2010
  • Objectives: This experiment was designed to investigate the effect of the InSamYangYoung-tang(Renshenyangrongtang) extract on $A{\beta}$-induced AD model. Methods: The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of cultured PC12 cells induced by $A{\beta}$ were investigated. The effects of the InSamYangYoung-tang(Renshenyangrongtang) extract on neural damages of hippocampal and cortical neurons in the mouse induced by $\beta$-amyloid were investigated. Results: 1. $A{\beta}$ treatment into neuronal cells activated cell death pathway when analyzed by MTT assay and by histological analysis. Then InSamYangYoung-tang(Renshenyangrongtang) treatment improved cell survival to a similar level as in normal group. 2. $A{\beta}$ treatment increased caspase 3 protein levels but decreased phospho-Erk1/2 in neuronal cells. InSamYangYoung-tang(Renshenyangrongtang) treatment reversed the production levels of two proteins close to those in normal group. 3. $A{\beta}$ treatment induced the atrophy of neuronal cells in terms of neuronal processes and cell body shrinkage, but InSamYangYoung-tang(Renshenyangrongtang) greatly improved their morphology. 4. Neuroprotective activity, as observed in InSamYangYoung-tang(Renshenyangrongtang)-treated groups, was similarly observed in cells treated with galantamine which was used as a positive control. Moreover, overall recovery pattern by InSamYangYoung-tang(Renshenyangrongtang) was similar between cultured PC12 cells and in vivo hippocampal and cerebral cortical neurons in the mouse brain. Conclusions: This experiment shows that the InSamYangYoung-tang(Renshenyangrongtang) may play a protective role in neural tissues damaged by cytotoxic substances. Since neuronal damage seen in degenerative brains such as AD are largely unknown, the current data may provide possible insight into therapeutic strategies for AD treatments. InSamYangYoung-tang(Renshenyangrongtang) might be effective for the treatment of AD. Investigation into the clinical use of the InSamYangYoung-tang(Renshenyangrongtang) for AD is suggested for future research.

Armeniacae Semen Extract Induces Apoptosis in Mouse N2a Neuroblastoma Cells

  • Kim, Beum-Seuk;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.12-21
    • /
    • 2005
  • Objectives: In the present study, we investigated whether an aqueous extract of Armeniacae semen induces apoptotic neuronal cell death upon mouse N2a neuroblastoma cells. Methods: 1. Cell viability was determined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTI) assay. 2. For in situ detection of apoptotic cells, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, 4,6-diamidino-2-phenylindole (DAPI) staining. 3. The fraction of cells was revealed by flow cytometric analysis used that. 4. For detection of apoptotic DNA cleavage, DNA fragmentation assay was performed. 5. For detection of bax and bcl-2, Western blot analysis was performed. 6. Caspase enzyme activity was measured using caspase-3 assay. Results: From the present results, N2a neuroblastoma cells treated with Armeniacae semen extract exhibited several characteristics of apoptosis. A treatment of Armeniacae semen extract was shown to increase the expression of Bax, a proapoptotic protein, and the treatment decreased the expression of Blc2, an anti-apoptotic protein. In addition, Armeniacae semen extract increased the caspase-3 enzyme activity. Conclusions: The present results show that Armeniacae semen extract induces apoptotic cell death in mouse N2a neuroblastoma cells.

  • PDF