Effect of Gojineumja(Guzhenyinzi) on Neural Tissue Degeneration In Mouse Model of Alzheimer Disease

고진음자(固眞飮子)가 Alzheimer Disease 병태모델의 신경세포 손상에 미치는 영향

  • Kim, Hyun-Joo (Dept. of Neuropsychiatry, College of Oriental Medicine, Daejeon University) ;
  • Jung, In-Chul (Dept. of Neuropsychiatry, College of Oriental Medicine, Daejeon University) ;
  • Lee, Sang-Ryong (Dept. of Neuropsychiatry, College of Oriental Medicine, Daejeon University)
  • 김현주 (대전대학교 한의과대학 선경정신과학교실) ;
  • 정인철 (대전대학교 한의과대학 선경정신과학교실) ;
  • 이상룡 (대전대학교 한의과대학 선경정신과학교실)
  • Published : 2009.06.30

Abstract

Objectives : This experiment was designed to investigate the effect of Gojineumja(Guzhenyinzi, GJEJ) on damaged neural tissue in cultured glial cells and in the mouse brain tissue. Methods : The effects of the GJEJ on activation of astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide were investigated. The effects of the GJEJ on levels of glial fibrillary acidic protein(GFAP)-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine were investigated. Results : 1. GJEJ reduced levels of activated astrocytes and caspase 3-positive cell counts in cultured glial cells administered with ${\beta}$-amyloid peptide. 2. GJEJ reduced levels of GFAP-positive reactive astrocyets and caspase 3-positive cells in the hippocampal subfields in the rats administered with scopolamine. Conclusions : The present data. suggest that GJEJ may have a protective function of neuronal and non-neuronal cells in damaged neural tissue caused by AD-like stimulations. Further studies on identification of effective molecular components of GJEJ and their interactions with damaged neural cells would be important for understanding molecular mechanism and may be further applicable for the development of therapeutic strategies.

Keywords

References

  1. Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006;368(9533):387-403. https://doi.org/10.1016/S0140-6736(06)69113-7
  2. 이광우. 임상신경학. 서울:고려의학. 2002:203-8.
  3. Selkoe DJ. Deciphering the genesis and fate of amyloid $\beta$-protein yields novel therapies for Alzheimer disease. J Clin Invest. 2002;110(10):1375-81.
  4. Dodart JC, May P. Overview on rodent models of Alzheimer's disease. Curr Protoc Neurosci. 2005;9(9):22.
  5. Gotz J, Ittner LM. Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci. 2008:9(7):532-44. https://doi.org/10.1038/nrn2420
  6. Selkoe DJ, Schenk D. Alzheimer's disease:molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol. 2003:43:545-84. https://doi.org/10.1146/annurev.pharmtox.43.100901.140248
  7. Winters Boyer D, Lisa M. Saksida, and Timothy J. Bussey. Paradoxical Facilitation of Object Recognition Memory after Infusion of Scopolamine into Perirhinal Cortex: Implications for Cholinergic System Function. J. Neurosci. 2006;26:9520-9. https://doi.org/10.1523/JNEUROSCI.2319-06.2006
  8. During MJ, Symes CW, Lawlor PA, Lin J, Dunning J, Fitzsimons HL, Poulsen D, Leone P, Xu R, Dicker BL, Lipski J, Young D. An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science. 2000:287(5457):1453-60. https://doi.org/10.1126/science.287.5457.1453
  9. Elliott J Mufson, Scott E Counts, Sylvia E Perez and Stephen D Ginsberg. Cholinergic system during the progression of Alzheimer's disease; therapeutic implications. Expert Review of Neurotherapeutics. 2008:8(11):1703-18. https://doi.org/10.1586/14737175.8.11.1703
  10. 張介賓. 張氏景岳全書. 서울:翰成社. 1978:610-1.
  11. 錢鏡湖. 辨證奇問全書. 台北:甘地出版社. 1990:222-5, 233-5.
  12. 陳士鐸. 石室秘錄. 北京:中國中醫藥出版社. 1991:125.
  13. 洪元植. 精校黃帝內經素問. 서울:東洋醫學硏究院. 1985:37, 124, 196, 229, 217-8, 229.
  14. 朱震亨. 金櫃鉤玄. 서울:鼎談出版社. 1992:306-7.
  15. 대한한방신경정신과학회편. 한방신경정신의학. 서울:집문당. 2007:311-20, 324-33.
  16. 李梴. 編註醫學入門. 서울:南山堂. 1988:419-20.
  17. 許浚. 東醫寶鑑, 重版. 서울:南山堂. 1966:447.
  18. 김현수, 이상룡, 정인철. 洗心湯 열수추출물, 초미세분말제형이 Alzheimer's Disease 병태모델에 미치는 영향. 동의생리병리학회지. 2007;21(3):688-99.
  19. 최강욱, 이상룡, 정인철. 聰明湯과 木槿皮聰明湯 열수추출물, 초미세분말제형이 microglia 및 기억력 감퇴 병태모델에 미치는 영향. 동의생리병리학회지. 2006;20(5):1200-10.
  20. 강대원, 강석봉. 固眞飮子가 methotrexate로 유발된 흰쥐의 免疫機能低下에 미치는 影響. 대한한방내과학회지. 2004;25(4):117-28.
  21. Banker G, Goslin, K. Culturing nerve cells, second edition. Cambridge:MIT Press. 2002.
  22. National Institute on Aging. National Institute on Health, Progress Report on Alzheimer's Disease. 1999.
  23. Cacquevel M, Lebeurrier N, Cheenne S, Vivien D. Cytokines in neuroinflammation and Alzheimer's disease. Current Drug Targets. 2004;5(6):529-34. https://doi.org/10.2174/1389450043345308
  24. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology. 1999;52(4):691-9. https://doi.org/10.1212/WNL.52.4.691
  25. Mhatre M, Floyd RA, Hensley K. Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. Journal of Alzheimers disease. 2004;6(2):147-57.
  26. 안준익, 이용성. Beta-amyloid의 분자생물학. 한양의대학술지. 2001;21(1):11-6.
  27. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease. Neurology. 1999;52(4):691-99. https://doi.org/10.1212/WNL.52.4.691
  28. de Vente J, Markerink-van Ittersum M, van Abeelen J, Emson PC, Axer H, Steinbusch HW. NO-mediated cGMP synthesis in cholinergic neurons in the rat forebrain ; effects of lesioning dopaminergic or serotonergic pathways on nNOS and cGMP synthesis. Eur J Neurosci. 2000;12(2):507-519. https://doi.org/10.1046/j.1460-9568.2000.00927.x
  29. Trabace L, Cassano T, Steardo L, Pietra C, Villetti G, Kendrick KM, Cuomo V. Biochemical and neurobehavioral profile of CHF2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J Pharmacol Exp Ther. 2000;294(1):187-194.
  30. 李尙仁. 本草學, 改訂 增補版. 서울:修書院. 1981:51-60, 70-1, 85-6, 101-3, 106-7, 114-6, 172-3, 281-2, 285-6, 348-9, 507-9.
  31. 辛民敎. 原色 臨床本草學, 改訂4版. 서울:永 林社. 1994:166-7, 169-73, 175-7, 198-9, 207-8, 219, 221-2, 241-4, 250-3, 312-3, 380-1.
  32. 上海中醫學院. 中草藥學. 香港:商務印書館. 1983:200-2, 226-30, 350-2, 511-5, 517-20, 520-2, 525-7, 538-40, 555-7, 561-2, 564-6, 589-92.
  33. Eckert A, Marques CA, Keil U, Schüssel K, Müller WE. Increased apoptotic cell death in sporadic and genetic Alzheimer's disease. Ann N Y Acad Sci. 2003;1010:604-9. https://doi.org/10.1196/annals.1299.113
  34. Standridge JB. Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer's disease. Curr Alzheimer Res. 2006;3(2):95-108. https://doi.org/10.2174/156720506776383068
  35. Unger JW. Glial reaction in aging and Alzheimer's disease. Microsc Res Tech.1998;43(1):24-8. https://doi.org/10.1002/(SICI)1097-0029(19981001)43:1<24::AID-JEMT4>3.0.CO;2-P
  36. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med. 2006;12(7):829-34. https://doi.org/10.1038/nm1425
  37. Rich T, Watson CJ, Wyllie A. Apoptosis: the germs of death. Nat Cell Biol. 1999;1(3):E69-71. https://doi.org/10.1038/11038
  38. Vassar R. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer's disease. Neuron. 2007;54(5):671-3. https://doi.org/10.1016/j.neuron.2007.05.018
  39. Yee AS, Longacher JM, Staley KJ. Convulsant and anticonvulsant effects on spontaneous CA3 population bursts. J Neurophysiol. 2003;89(1):427-41. https://doi.org/10.1152/jn.00594.2002
  40. Wallenstein GV, Hasselmo ME. Functional transitions between epileptiform-like activity and associative memory in hippocampal region CA3. Brain Res Bull. 1997;43(5):485-93. https://doi.org/10.1016/S0361-9230(97)00003-8
  41. Weiss C, Preston AR, Matthew M. Oh, Roy D. Schwarz, Devin Welty, and John F. Disterhoft. The M1 Muscarinic Agonist CI-1017 Facilitates Trace Eyeblink Conditioning in Aging Rabbits and Increases the Excitability of CA1 Pyramidal Neurons. J. Neurosci, 2000;20:783-90.
  42. Nobili L, Sannita WG. Cholinergic modulation, visual function and Alzheimer's dementia, Vision Res. 1997;37(24):3559-71. https://doi.org/10.1016/S0042-6989(97)00076-X
  43. Saber AJ, Cain DP. Combined $\beta$-adrenergic and cholinergic antagonism produces behavioral and cognitive impairments in the water maze: implications for Alzheimer disease and pharmacotherapy with $\beta$-adrenergic antagonists. Neuropsychopharmacology. 2003;28(7):1247-56. https://doi.org/10.1038/sj.npp.1300163
  44. Hartmann J, Erb C, Ebert U, Baumann KH, Popp A, Konig G, Klein J. Central cholinergic functions in human amyloid precursor protein knock-in/presenilin-1 transgenic mice. Neuroscience. 2004;125(4):1009-17. https://doi.org/10.1016/j.neuroscience.2004.02.038
  45. Bellucci A, Luccarini I, Scali C, Prosperi C, Giovannini MG, Pepeu G, Casamenti F. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice. Neurobiol Dis. 2006;23(2):260-72. https://doi.org/10.1016/j.nbd.2006.03.012
  46. Liskowsky W, Schliebs R. Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci. 2006;24(2-3):149-56. https://doi.org/10.1016/j.ijdevneu.2005.11.010
  47. Litvan I, Sirigu A, Toothman J, Grafman J. What can preservation of autobiographic memory after muscarinic blockade tell us about the scopolamine model of dementia. Neurology. 1995;45(2):387-9. https://doi.org/10.1212/WNL.45.2.387
  48. Kobayashi K, Hayashi M, Nakano H, Shimazaki M, Sugimori K, Koshino Y. Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer's disease. J Alzheimers Dis. 2004;6(6):623-32, 673-81.
  49. Marco L, do Carmo Carreiras M. Galanthamine, a natural product for the treatment of Alzheimer's disease. Recent Patents CNS Drug Discov. 2006;1(1):105-11. https://doi.org/10.2174/157488906775245246
  50. Kertesz A, Morlog D, Light M, Blair M, Davidson W, Jesso S, Brashear R. Galantamine in frontotemporal dementia and primary progressive aphasia. Dement Geriatr Cogn Disord. 2008;25(2):178-85. https://doi.org/10.1159/000113034
  51. Villarroya M, Garcia AG, Marco-Contelles J, Lopez MG. An update on the pharmacology of galantamine. Expert Opin Investig Drugs. 2007;16(12):1987-98. https://doi.org/10.1517/13543784.16.12.1987
  52. Razay G, Wilcock GK. Galantamine in Alzheimer's disease. Expert Rev Neurother. 2008;8(1):9-17. https://doi.org/10.1586/14737175.8.1.9
  53. Raschetti R, Albanese E, Vanacore N, Maggini M. Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med. 2007;4(11):338. https://doi.org/10.1371/journal.pmed.0040338
  54. Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysis, Clin Interv Aging. 2008;3(2):211-25.
  55. Winblad B, Gauthier S, Scinto L, Feldman H, Wilcock GK, Truyen L, Mayorga AJ, Wang D, Brashear HR, Nye JS; GAL-INT-11/18 Study Group, Safety and efficacy of galantamine in subjects with mild cognitive impairment, Neurology. 2008;70(22):2024-35. https://doi.org/10.1212/01.wnl.0000303815.69777.26
  56. Leung LW, Yim CY. Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res. 1991;553(2):261-74. https://doi.org/10.1016/0006-8993(91)90834-I
  57. Leung LS, Shen B, Nagalingam N, and Ma J. Cholinergic Activity Enhances Hippocampal Long-Term Potentiation in CA1 during Walking in Rats. J. Neurosci. 2003;23:9297-304.
  58. Houser CR. Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res. 2007;163:217-32. https://doi.org/10.1016/S0079-6123(07)63013-1