• Title/Summary/Keyword: Mouse Size

Search Result 344, Processing Time 0.025 seconds

Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with Colloidal Gold

  • Kibong Choi;Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 1998
  • We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte(mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with anti-mouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.

  • PDF

Characterization of the CD11c Promoter Which Is Expressed in the Mouse Dendritic Cells (생쥐 수지상세포에서 발현하는 CD11c 프로모터의 규명)

  • Kim, Bon-Gi;Kim, Jung-Sik;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • v.8 no.4
    • /
    • pp.137-142
    • /
    • 2008
  • Background: CD11c, also known as integrin alpha x, is one of the optimum markers of dendritic cells. However, the regulation of the CD11c expression in mouse has not been identified yet. In this study, in order to analyze the regulation of CD11c expression, the promoter of CD11c was cloned and characterized. Methods: To identify the promoter portion, various sizes of what are considered to be CD11c promoter fragments was amplified by polymerase chain reaction (PCR), using mouse genomic DNA as a template. After sequence was obtained, these fragments were transfected into various cell lines including mouse dendritic cell lines such as JAWSII and DC2.4 and L929 as control cell line.. The promoter activity of three promoter fragments was measured and compared by luciferase activity in the transfected cells. Results: Three clones with size of 1kb, 3kb and 6kb were obtained from mouse genomic DNA. Flow cytometry analysis of JAWSII cells revealed that 52% of the cells expressed CD11c, which was confirmed by RT-PCR analysis. On the contrary, L929 and DC 2.4 cells did not express CD11c. The CD11c+ JAWSII cells were enriched from 52% to 90% with cell sorter. The comparative luciferase activity analyisis demonstrated that the region responsible for tissue specific expression was contained within -3 kb and the clone with size of 3 kb particularly showed higher luciferase activity than 6 kb and 1 kb clones. Conclusion: The CD11c promoter region containing the region responsible for tissue specificity was successfully cloned and -3 kb region showed the highest activity.

Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: in vitro and in vivo evaluation studies

  • Kim, Ki-Taek;Kim, Min-Hwan;Park, Ju-Hwan;Lee, Jae-Young;Cho, Hyun-Jong;Yoon, In-Soo;Kim, Dae-Duk
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.512-523
    • /
    • 2018
  • Background: 20(S)-Protopanaxadiol (20S-PPD) is a fully deglycosylated ginsenoside metabolite and has potent dermal antiaging activity. However, because of its low aqueous solubility and large molecular size, a suitable formulation strategy is required to improve its solubility and skin permeability, thereby enhancing its skin deposition. Thus, we optimized microemulsion (ME)-based hydrogel (MEH) formulations for the topical delivery of 20S-PPD. Methods: MEs and MEHs were formulated and evaluated for their particle size distribution, morphology, drug loading capacity, and stability. Then, the deposition profiles of the selected 20S-PPD-loaded MEH formulation were studied using a hairless mouse skin model and Strat-M membrane as an artificial skin model. Results: A Carbopol-based MEH system of 20S-PPD was successfully prepared with a mean droplet size of 110 nm and narrow size distribution. The formulation was stable for 56 d, and its viscosity was high enough for its topical application. It significantly enhanced the in vitro and in vivo skin deposition of 20S-PPD with no influence on its systemic absorption in hairless mice. Notably, it was found that the Strat-M membrane provided skin deposition data well correlated to those obtained from the in vitro and in vivo mouse skin studies on 20S-PPD (correlation coefficient $r^2=0.929-0.947$). Conclusion: The MEH formulation developed in this study could serve as an effective topical delivery system for poorly soluble ginsenosides and their deglycosylated metabolites, including 20S-PPD.

Studies on the Small Body Size Mouse Developed by Mutagen N-Ethyl-N-nitrosourea

  • Zhang, Qian-Kun;Cho, Kyu-Hyuk;Cho, Jae-Woo;Cha, Dal-Sun;Park, Han-Jin;Yoon, Seok-Joo;Zhang, ShouFa;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Mutant mouse which show dwarfism has been developed by N-ethyl-N-nitrosourea (ENU) mutagenesis using BALB/c mice. The mutant mouse was inherited as autosomal recessive trait and named Small Body Size (SBS) mouse. The phenotype of SBS mouse was not apparent at birth, but it was possible to distinguish mutant phenotype from normal mice 1 week after birth. In this study, we examined body weight changes and bone mineral density (BMD), and we also carried out genetic linkage analysis to map the causative gene(s) of SBS mouse. Body weight changes were observed from birth to 14 weeks of age in both affected (n = 30) and normal mice (n = 24). BMD was examined in each five SBS and normal mice between 3 and 6 weeks of age, respectively. For the linkage analysis, we produced backcross progeny [(SBS${\times}$C57BL/6J) $F_1{\times}$ SBS] $N_2$ mice (n = 142), and seventy-four microsatellite markers were used for primary linkage analysis. Body weight of affected mice was consistently lower than that of the normal mice, and was 43.7% less than that of normal mice at 3 weeks of age (P < 0.001). As compared with normal mice at 3 and 6 weeks of age, BMD of the SBS mice was significantly low. The results showed 15.5% and 14.1 % lower in total body BMD, 15.3% and 8.7% lower in forearm BMD, and 29.7% and 20.1% lower in femur BMD, respectively. The causative gene was mapped on chromosome 10. The map order and the distance between markers were D10Mit248 - 2.1 cM - D10Mit51 - 4.2 cM - sbs - 0.7 cM - D10Mit283 - 1.4cM - D10Mit106 - 11.2cM - D10Mit170.

The Effects of Salvia miltiorrhiza on High Fat Diet-induced Obese Diabetic Mouse Model (단삼투여가 고지방식이로 유발된 비만형 당뇨병 동물모델에 미치는 영향)

  • Choi, Seon-Wook;Kim, Dong-Hoon;Choi, Seung-Bum;Park, Geun-Hee;Kim, Young-Seung
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.429-437
    • /
    • 2012
  • Objectives : Obesity is an important cause of diabetes, and lipotoxicity causes insulin resistance. In this study, we investigated the effects of Salvia miltiorrhiza on high fat diet-induced obese type 2 diabetic mouse models. Methods : Diabetes was induced in ICR male mouse (23~25 g) with Surwit's high fat, high sucrose diet. Mice were divided into 4 groups (n=10) of normal, control, Salvia miltiorrhiza, and metformin. After 8 weeks, body weight, OGTT, fructosamine, lipid profile, serum level of adiponectin and leptin, epididymal fat pad, liver weight and epididymal adipocyte size were measured. Results : Salvia miltiorrhiza significantly reduced oral glucose tolerance levels, fructosamine serum level, epididymal fat weight, and epididymal adipocyte size. Salvia miltiorrhiza also increased HDL-cholesterol, adiponectin and leptin serum levels. Conclusions : These results show that Salvia miltiorrhiza improves insulin resistance. Therefore we suggest that Salvia miltiorrhiza would be an effective treatment for obese type 2 diabetic patients.

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Molecular Cloning of H-Y Antigen Gene III. Construction of Mouse Testis cDNA Library and Screening of H-Y Ag Gene (H-Y 항원 유전자의 클로닝에 관한 연구 III. 생쥐정소 cDNA Library 구성과 유전자의 검색)

  • 이정렬;김창규;김종배
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 1993
  • These experiments were carried out to construct mouse testis cDNA library and to to seen H-Y Ag gene. Mouse testis was obtained from BALB/c inbreed mouse that was after-born 1 week. Isolation of mouse testis total RNA was carried out by guanidum/cesium choloride, poly(A+) mRNAs were purified by oligo d(T)-cellulose chromatography method. To investigate protein synthesis activity, in-vitro translation carried out by total RNA and poly(A+) mRNA. The products of in-vitro translation were identified in 12.5% PAGE. Single strand DNA and double strand DNA were synthesized from poly(A+) mRNA and purified using phenol/chloroform/isoamylalcohol. Synthesized cDNA was combined with cohesive Eco RI polylinker, its recombination efficiencies were identified by X-gal and IPTG. In the cDNA library, 1$\times$107 phagemids were screened with 32P labelled probe. Hybridization were carried on $65^{\circ}C$ for 16~20hours. And 1$\times$106 phagemids were screened with rabbit-anti-H-Y. In former, select 5 positive clones, and later, 1 positive clone. Its southern blot analysis showed various size of insert cDNA from 0.7kb to 3kb.

  • PDF

Overexpression of Mouse Nck Transforms Mouse Febroblast NIH3T3

  • Kim, Young H.;Han, Sun-Mi;Kim, Moon G.;Park, Dong-Eun;Park, Sang D.;Seong, Rho H.
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.521-526
    • /
    • 1997
  • We isolated a mouse nck cDNA from the thymus cDNA expression library. The cDNA encodes a 377 amino acid protein and displays 97% amino acid sequence identity to human oncogenic protein nck, which is composed almost exclusivelv of three src homology 3 (SH3) domains and one SH2 domain. The sequence analysis also showed that the isolated cDNA is the mouse counterpart of the human nck and different from the mouse grb4, which has been reported to be highly similar to the human nck and, therefore considered as a mouse nck, Northern blot analysis showed that the transcript of the gene was 1.8 kb and was highly expressed in the testis, thymus, and brain but moderately in the liver and lymph node. Western blot analysis showed that the size of the protein was about 47 kDa. Overexpression of the mouse Nck transformed a mouse fibroblast cell line, NIH3T3. The results clearly indicate that normal nck gene has transforming ability and provide an argument against a suggested possibility that the transforming ability of the human nck gene is due to a mutation(s) in the gene.

  • PDF

Expression of Luteinizing Hormone (LH) Subunit Genes in Mouse Testis

  • Kim, Hee Soo;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.21 no.3
    • /
    • pp.327-333
    • /
    • 2017
  • Gonadotropins are heterodimers consisting an alpha chain ($Cg{\alpha}$) and a beta chain. Interestingly, presence of complicated $LH-{\beta}$ transcripts in rat testis was accidently found; testicular $LH-{\beta}$ transcripts were confined in seminiferous tubules to spermatids, and the translated products were localized in the elongated spermatids. We hypothesized that mouse testis has potential to produce the tissue specific $LH-{\beta}$ with similar structure to the rat testicular forms. To verify our hypothesis, we examined the adult mouse (ICR) testis using RT-PCR and immunohistochemistry. The PCR revealed the presence of the identical products in the reactions for three LH subunit types. The expected product sizes for mouse $Cg{\alpha}$ and $LH-{\beta}$ known as pituitary type were 224 bp and 503 bp, respectively. The testicular type $LH-{\beta}$ products were produced by a primer set based on the rat sequences, with unexpected size of 800 bp. Sequencing revealed that the proximal and distal parts (2-82 and 661- 773 bp, respectively) were homologous to rat testicular $LH-{\beta}$ cDNA, and middle part (83-660 bp) was a unique mouse-specific region. Both $Cg{\alpha}$ and $LH-{\beta}$ positive signals were in the round and elongated spermatids and mature sperms, and the $LH-{\beta}$ signals were more intense. In conclusion, our study demonstrated that the presence and localization of the LH subunits in mouse testis. Further studies will be needed to understand the precise structure and function of mouse testicular LH.