• 제목/요약/키워드: Mouse Organs

검색결과 218건 처리시간 0.026초

Localization patterns of phospholipid hydroperoxide glutathione peroxidase mRNA in Mouse Organs

  • Seo, Dong-Suk;Nam, Sang-Yoon;Kang, Jong-Koo
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.163-163
    • /
    • 2001
  • Selenium (Se) is an essential micronutrient for mammals and its biological functions are mediated by selenoprotein. In tissues, Se is incorporated into the selenoprotein by recognition of the UGA codon as a stop codon for selenoprotein. Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an antioxidant selenoprotein that belongs to the superfamily of selenium-dependent peroxidase.(omitted)

  • PDF

포유동물 생식세포 및 생식기관에서 발현되는 Two-Pore Domain 칼륨 통로 (Two-Pore Domain $K^+$ Channels Expressed in Mammalian Reproductive Cells and Organs)

  • 이효진;한재희;강다원
    • 한국수정란이식학회지
    • /
    • 제24권3호
    • /
    • pp.189-197
    • /
    • 2009
  • Two-pore domain 칼륨($K_{2P}$) 통로는 흥분세포 및 비흥분세포의 안정막 전압을 일정하게 유지하는데 관여한다. 그러나 생식세포 및 생식기관에서 발현되는 $K_{2P}$ 통로의 분포영역 및 그 기능에 대해서는 연구자들에 의해 아직 정리되지 못하였다. 본 종설에서는 $K_{2P}$ 통로의 생식세포 및 생식기관에서 발현, 분포 및 생리학적 의의를 논하였다. $K_{2P}$ 통로는 인간 영양막세포, 자궁근층, 태반혈관계, 자궁평활근조직, 태반융모조직 및 임신자궁조직에서 발현되어 임신에 있어서 관련성을 제시되었다. 또한, $K_{2P}$ 통로는 마우스 전핵배, 원숭이 정자 및 한우의 난소, 정소, 난자, 정자 및 수정란에서 발현 변화를 보였다. 특히, $K_{2P}$ 통로는 체외배양 시 변화되는 온도, 산소분압과 같은 배양조건에 의해 조절되는 특징을 보임으로써 수정 및 배 발달에 영향을 줄 수 있는 인자로 제시되었다. 그리고 $K_{2P}$ 통로는 과산화수소에 의해 유도된 마우스 전핵배의 세포 사멸에 있어서 칼륨 이온의 유출에 관여함이 확인되었다. $K_{2P}$ 통로의 생식세포 및 생식기관 내 발현 형태와 생리학적 특징은 생식생리학에 있어서 이온 통로 관련 기능들을 이해하는데 도움이 될 것이다.

CRISPR/Cas9-mediated knockout of Rag-2 causes systemic lymphopenia with hypoplastic lymphoid organs in FVB mice

  • Kim, Joo-Il;Park, Jin-Sung;Kim, Hanna;Ryu, Soo-Kyung;Kwak, Jina;Kwon, Euna;Yun, Jun-Won;Nam, Ki-Taek;Lee, Han-Woong;Kang, Byeong-Cheol
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.166-175
    • /
    • 2018
  • Recombination activating gene-2 (RAG-2) plays a crucial role in the development of lymphocytes by mediating recombination of T cell receptors and immunoglobulins, and loss of RAG-2 causes severe combined immunodeficiency (SCID) in humans. Rag-2 knockout mice created using homologous recombination in ES cells have served as a valuable immunodeficient platform, but concerns have persisted on the specificity of Rag-2-related phenotypes in these animals due to the limitations associated with the genome engineering method used. To precisely investigate the function of Rag-2, we recently established a new Rag-2 knockout FVB mouse line ($Rag-2^{-/-}$) manifesting lymphopenia by employing a CRISPR/Cas9 system at Center for Mouse Models of Human Disease. In this study, we further characterized their phenotypes focusing on histopathological analysis of lymphoid organs. $Rag-2^{-/-}$ mice showed no abnormality in development compared to their WT littermates for 26 weeks. At necropsy, gross examination revealed significantly smaller spleens and thymuses in $Rag-2^{-/-}$ mice, while histopathological investigation revealed hypoplastic white pulps with intact red pulps in the spleen, severe atrophy of the thymic cortex and disappearance of follicles in lymph nodes. However, no perceivable change was observed in the bone marrow. Moreover, our analyses showed a specific reduction of lymphocytes with a complete loss of mature T cells and B cells in the lymphoid organs, while natural killer cells and splenic megakaryocytes were increased in $Rag-2^{-/-}$ mice. These findings indicate that our $Rag-2^{-/-}$ mice show systemic lymphopenia with the relevant histopathological changes in the lymphoid organs, suggesting them as an improved Rag-2-related immunodeficient model.

마우스의 배의 동결보존 (Cryopreservation (Vitrification) of Mouse Embryos)

  • 강민수
    • 한국수정란이식학회지
    • /
    • 제6권2호
    • /
    • pp.30-36
    • /
    • 1991
  • The method of vitnilcation has various merits. It needs neither seeding nor slow freezing. It can freeze embryo by putting it directly into liquid nitrogen at the indoor temperature to $0^{\circ}C$. The operation process is quite easy. Moreover, higher promise of survival can be expected as there is no physical damage by any lumps of ice with the exception of cells. In Kasal's experiment (1990) using EFS liquid and Kang's experiment (1991) using GFS liquid the ratio of the damaged embryo was only 2-3%. But, the method of vitrification is now on the process of improvement, and the final or united method is not yet established. At the present time, most of the major institutes all over the world are using the traditional freezing method in the preservation of mouse embryo, but it is very likely that the vitrification will prevaIl in the near future considering the various merits of it. Calves can be begotten from the embryo by means of vitriilcated preservation in the cases of cow, rat, and rabbit as well as of mouse. In addition, recent experiments have shown that vitrificated preservation was successful in the case of drosophila embryo which was much bigger than mammalian embryo, which fact tells that this method is expected to be preferably used even in the preservation of living organs in the near future.

  • PDF

Shengmaisan Regulates Pacemaker Potentials in Interstitial Cells of Cajal in Mice

  • Kim, Byung Joo
    • 대한약침학회지
    • /
    • 제16권4호
    • /
    • pp.36-42
    • /
    • 2013
  • Objectives: Shengmaisan (SMS) is a traditional Chinese medicine prescription widely used for the treatment of diverse organs in Korea. The interstitial cells of Cajal (ICCs) are pacemaker cells that play an important role in the generation of coordinated gastrointestinal (GI) motility. We have aimed to investigate the effects of SMS in the ICCs in the mouse small intestine. Methods: To dissociate the ICCs, we used enzymatic digestions from the small intestine in a mouse. After that, the ICCs were identified immunologically by using the anti-c-kit antibody. In the ICCs, the electrophysiological whole-cell patch-clamp configuration was used to record pacemaker potentials in the cultured ICCs. Results: The ICCs generated pacemaker potentials in the mouse small intestine. SMS produced membrane depolarization with concentration-dependent manners in the current clamp mode. Pretreatment with a $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum, stopped the generation of the pacemaker potentials. In the case of $Ca^{2+}$-free solutions, SMS induced membrane depolarizations. However, when thapsigargin in a bath solution was applied, the membrane depolarization was not produced by SMS. The membrane depolarizations produced by SMS were inhibited by U-73122, an active phospholipase C (PLC) inhibitors. Furthermore, chelerythrine and calphostin C, a protein kinase C (PKC) inhibitors had no effects on SMS-induced membrane depolarizations. Conclusions: These results suggest that SMS might affect GI motility by modulating the pacemaker activity through an internal $Ca^{2+}$- and PLC-dependent and PKC-independent pathway in the ICCs.

Differential Expression of Cyclic AMP-Response Element Binding Protein Zhangfei (CREBZF) in the Mouse Testis during Postnatal Development

  • Jang, Hoon
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권1호
    • /
    • pp.65-72
    • /
    • 2018
  • Cyclic AMP-response element binding protein zhangfei (CREBZF), a member of ATF/CREB (activating transcription factor/ cAMP response element binding protein) family, regulates numerous cellular functions and development of cells by interacting transcription factors. This study discovered the expression pattern of CREBZF in seminiferous tubule of testes during the postnatal development of mice. In testis, CREBZF mRNA expression was the highest among other organs. Immunofluorescence analyses showed that the CREBZF was specifically expressed on spermatocyte but not in spermatogonia and Sertoli cells in seminiferous epithelium of mouse testis. Semi-quantitative polymerase chain reaction (PCR) analysis showed that CREBZF transcript level was significantly elevated during postnatal development of mouse testis. Confocal imaging analysis indicated that the protein expression of CREBZF in seminiferous tubule remained low until postnatal day (PD) 14, and was dramatically increased in PD 21. Interestingly, only one type of the spermatocyte expressed CREBZF specifically among SCP3-positive spermatocytes. Taken together, these results suggest that CREBZF may be novel putative marker of the spermatocyte and regulate meiosis during postnatal development of mice.

The Tissue Distribution of Nesfatin-1/NUCB2 in Mouse

  • Kim, Jinhee;Chung, Yiwa;Kim, Heejeong;Im, Eunji;Lee, Hyojin;Yang, Hyunwon
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권4호
    • /
    • pp.301-309
    • /
    • 2014
  • Nesfatin-1, an anorexic nucleobindin-2 (NUCB2)-derived hypothalamic peptide, controls appetite and energy metabolism. Recent studies show that nesfatin-1/NUCB2 is expressed not only in the brain but also in gastric and adipose tissues. Thus, we investigated the distributions of nesfatin-1/NUCB2 in various tissues of male and female mice by real-time PCR, western blotting, and immunohistochemical staining. Real-time PCR analyses showed that NUCB2 mRNA was predominantly expressed in the pituitary and at lower levels in the hypothalamus, spleen, thymus, heart, liver, and muscle of both male and female mice. Expression was much higher in reproductive organs, such as the testis, epididymis, ovary, and uterus, than in the hypothalamus. Western blot analysis of the nesfatin-1 protein level showed similar results to the real-time PCR analyses in both male and female mice. These results suggest that nesfatin-1/NUCB2 have widespread physiological effects in endocrine and non-endocrine organs. In addition, immunohistochemical staining revealed that nesfatin-1 was localized in interstitial cells, including Leydig cells and in the columnar epithelium of the epididymis. Nesfatin-1 was also expressed in theca cells and interstitial cells in the ovary and in epithelial cells of the endometrium and uterine glands in the uterus. These results suggest that nesfatin-1 is a novel potent regulator of steroidogenesis and gonadal function in male and female reproductive organs. Further studies are required to elucidate the functions of nesfatin-1 in various organs of male and female mice.

X-선조사(線照射)를 입은 Ehrlich 복수담암(腹水擔癌)마우스의 간(肝) 및 신조직(腎組織)의 산소소비량(酸素消費量) 및 단백량(蛋白量)에 대(對)하여 (Effect of X-Irradiation on the Oxygen Consumption Rate and Protein Level of Ehrlich Ascites Tumor-Bearing Mouse Liver and Kidney)

  • 최병옥;주영은
    • The Korean Journal of Physiology
    • /
    • 제3권2호
    • /
    • pp.17-23
    • /
    • 1969
  • Oxygen consumption rate $(QO_2)$ and protein content of liver and kidney of the Ehrlich ascites tumor-bearing mouse were measured from 6th till 14th day after the inoculation of $4{\times}10^6$ Ehrlich ascites tumor cells. The results thus obtained were compared with those of the groups in which; 1) Whole body x-irradiation with 400 r was done to mouse prior to the inoculation of $4{\times}10^6$ Ehrlich ascites tumor cells, 2) Same number of the irradiated tumor cells were inoculated after subjecting the tumor cells to x-irradiation with 400 r or 900 r in vitro, and 3) the normal, and the following results were obtained; 1. $QO_2$ of the liver and kidney of the tumor-bearing mouse were all lower than the normal and a gradual decrease of $QO_2$ in both liver and kidney was noted as the ascites tumor was progressively developing. 2. In the groups where whole body x-irradiation with 400 r was done, or x-irradiation of ascites tumor cells in vitro with either 400 r or 900 r, $QO_2$ of the liver and kidney were lower than the normal, and the pattern of the decrease was similar in the case of the tumor-bearing mouse. 3. Protein contents in all the groups showed lower values than the normal, and the decrease was gradual as the ascites tumor was developing. 4. $QO_2$ and protein levels in the liver were generally lower than those in the kidney. 5. A certain cancerous metabolism was, therefore, noted in the remote organs of Ehrlich ascites tumor-bearing animal.

  • PDF

C1qa deficiency in mice increases susceptibility to mouse hepatitis virus A59 infection

  • Kim, Han-Woong;Seo, Sun-Min;Kim, Jun-Young;Lee, Jae Hoon;Lee, Han-Woong;Choi, Yang-Kyu
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.36.1-36.12
    • /
    • 2021
  • Background: Mouse hepatitis virus (MHV) A59 is a highly infectious pathogen and starts in the respiratory tract and progresses to systemic infection in laboratory mice. The complement system is an important part of the host immune response to viral infection. It is not clear the role of the classical complement pathway in MHV infection. Objectives: The purpose of this study was to determine the importance of the classical pathway in coronavirus pathogenesis by comparing C1qa KO mice and wild-type mice. Methods: We generated a C1qa KO mouse using CRISPR/Cas9 technology and compared the susceptibility to MHV A59 infection between C1qa KO and wild-type mice. Histopathological and immunohistochemical changes, viral loads, and chemokine expressions in both mice were measured. Results: MHV A59-infected C1qa KO mice showed severe histopathological changes, such as hepatocellular necrosis and interstitial pneumonia, compared to MHV A59-infected wild-type mice. Virus copy numbers in the olfactory bulb, liver, and lungs of C1qa KO mice were significantly higher than those of wild-type mice. The increase in viral copy numbers in C1qa KO mice was consistent with the histopathologic changes in organs. These results indicate that C1qa deficiency enhances susceptibility to MHV A59 systemic infection in mice. In addition, this enhanced susceptibility effect is associated with dramatic elevations in spleen IFN-γ, MIP-1 α, and MCP-1 in C1qa KO mice. Conclusions: These data suggest that C1qa deficiency enhances susceptibility to MHV A59 systemic infection, and activation of the classical complement pathway may be important for protecting the host against MHV A59 infection.