• Title/Summary/Keyword: Mouse Brain

Search Result 605, Processing Time 0.027 seconds

Effects of Herbal Medicines on Monoamine Oxidase Activity (수종의 천연물이 Monoamine Oxidase 활성에 미치는 영향 (제3보) : 황련, 계피, 지실의 활성 저해작용)

  • Lee, Sang Seon;Kim, Young Ho;Lee, Myung Koo
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.2
    • /
    • pp.139-142
    • /
    • 1998
  • The effects of MeOH extracts from 28 herbal medicines on monoamine oxidase (MAO) activity were investigated. MAO was purified from mouse brain and its activity was determined by fluoro-photometry using kynuramine as a substrate. Three MeOH extracts, Coptis japonica, Cinnamomum cassia and Poncirus trifoliate from the herbal medicines showed a strong inhibitory effect with less than $100\;{\mu}g/ml$ in their inhibitory amounts of $50\%$ ($IC_{50}$ values) on MAO activity. Four MeOH extracts including Evodia officinalis exhibited a mild inhibition of MAO activity with $100-200\;{\mu}g/ml$ in their $IC_{50}$ values.

  • PDF

Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity

  • Kim, Somi;Kim, TaeHyun;Lee, Hye-Ryeon;Kong, Young-Yun;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.515-522
    • /
    • 2015
  • Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway.

The Protective Effects of Sopung-tang on Brain Damage in Photothrombotic Ischemia Mouse Model (뇌경색 마우스의 뇌손상에 대한 소풍탕(疎風湯)의 보호효과)

  • Jang, Seok-O;Choi, Ji-Hye;Lee, John Dong-Yeop;Choi, Yong-Jun;Lee, In;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.612-623
    • /
    • 2009
  • Objectives : The water extract of Sopung-tang (SPT) has been traditionally used in the treatment of acute stroke in Oriental Medicine. Pro-inflammatory cytokines play a critical role in the onset of post-ischemic inflammatory cascades. The present study was designed to investigate the effects of SPT on pro-inflammatory cytokine production in a photothrombotic ischemia mouse model. Methods : After SPT oral administration to the mice for five days, with using Rose Bengal and cold light, photothrombotic ischemia lesion was induced in stereotactically held male BALB/c mice. Also, results including, gross finding lesion size, histopathological finding changes, and inflammatory cytokine expression changes from the photothrombotic ischemia mouse model were observed. Results : The photothrombotic ischemia lesion was decreased by the oral injection of SPT. Also, SPT inhibited the expression of TNF-$\alpha$, IL-$1{\beta}$, IL-6, the active form of caspase-3 protease, and transglutaminase-2 in the photothrombotic ischemia lesion. Conclusions : These results suggest that SPT protects the ischemic death of brain cells through suppression of the production of anti-inflammatory cytokines and catalytic activation of caspase-3 protease in the photothrombotic ischemia mouse model.

  • PDF

Neuroanatomical studies on acupoints(SJ5, Pe6, SP6 and GB39) projecting to the brain area related to dimentia using neural tracer, pseudorabies virus in mouse (치매와 관련된 뇌영역에 투사되는 경혈(외관(SJ5), 내관(Pe6), 삼음교(SP6) 및 현종(GB39))의 탐색에 관한 신경해부학적 연구)

  • Lee, Chang-hyun;Kim, Tae-heon;Lee, Sang-ryong;Yook, Tae-han
    • Journal of Acupuncture Research
    • /
    • v.20 no.6
    • /
    • pp.168-181
    • /
    • 2003
  • Objective: The neuroanatomical studies on the acupoints(Waiguan(SJ5), Neiguan(Pe6), Sanyinjiao(SP6) and Xuanzhong(GB39)) projecting to the brain area related to dimentia using the pseudorabies virus (PRV-Ba strain) in the mouse was described. Methods: The common locations of the brain projecting to the Waiguan, Neiguan, Sanyinjiao and Xuanzhong following injection of PRV-Ba were histochemically observed. The results were as follows Results : 1. PRV-Ba labeled areas in medulla oblongata, pons and midbrain were similar to 4 acupoints, theses areas were related to autonomic center. 2. PRV-Ba labeled areas in diencephalon and cebrebrum were differently labeled according to the acupoints. 3. CNS labeled areas in Waiguan were dense labeled in CA1-3 area of hippocampus, amygdaloid nucleus, insular cortex, parietal cortex, entorhinal cortex, perirhinal cortex, dorsal endopiriform cortex, piriform cortex, amygdalopiriform transition and bed n. of stria terminalis. 4. CNS labeled areas in Neiguan were dense labeled in insular cortex, amygdaloid nucleus, parietal cortex, entorhinal cortex, perirhinal cortex, dorsal endopiriform cortex, piriform cortex, amygdalopiriform transition and bed n. of stria terminalis. 5. CNS labeled areas in Sanyinjiao were dense labeled in CA1-3 of hippocampus, suprachiasmatic n., dorsal endopiriform cortex, piriform cortex and bed n. of stria terminalis. 6. CNS labeled areas in Xuanzhong were dense labeled in suprachiasmatic n., dorsal endopiriform cortex and piriform cortex. Conclusions : Following these results, labeled acupoints in brain areas related to dimentia are Waiguan and Neiguan. Common labeled areas are amygdaloid n., entorhinal cortex, amygdaopiriform transition, bed n. stria terminalis and perirhinal cortex.

  • PDF

Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism

  • Kim, Hoon;Lee, Jung Eun;Yoo, Hyun Ju;Sung, Jae Hoon;Yang, Seung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.689-697
    • /
    • 2020
  • Objective : Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and investigated its regulation on NLRP3 inflammasome and glucose metabolism. Methods : The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the metabolites in the ICH model using liquid chromatography-tandem mass spectrometry. Results : On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was increased in the ICH mice treated with pioglitazone. Conclusion : Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 might be a therapeutic target for ICH recovery.