• 제목/요약/키워드: Mouse, Implantation

검색결과 106건 처리시간 0.019초

Pleiotrophin이 골수 줄기 세포의 부착 및 골형성에 미치는 효과에 대한 연구 (PLEIOTROPHIN EFFECTS ON BINDING AND SUBSEQUENT OSTEOGENESIS OF HUMAN MESENCHYMAL STEM CELLS)

  • 윤정호;윤정주;장현석;임재석;이의석;김대성;권종진
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권2호
    • /
    • pp.111-117
    • /
    • 2006
  • An area of current research is investigating the app1ication of human mesenchymal stem cells or hMSCs as a cell-based regenerative therapy. In order to achieve effective bone regeneration, appropriate matrices functioning as cell-carriers must be identified and optimized in terms of function, efficacy and biocompatibility. Two methods of approaching optimization of matrices are to facilitate adhesion of the donor hMSCs and furthermore to facilitate recruitment of host progenitor cells to osteoblastic differentiation. Pleiotrophin is an extracellular matrix protein that was first identified in developing rat brains and believed to be associated with developing neuronal pathways. A recent publication by Imai and colleagues demonstrated that transgenic mice with upregulated pleiotrophin expression developed a greater volume of cortical as well as cancellous bone. The proposed mechanism of action of pleiotrophin is demonstrated here. Through either environmental stresses and/or intracellular regulation, there is an increase in pleiotrophin production. The pleiotrophin is released extracellularly into areas requiring bone deposition. A receptor-mediated process recruits host osteoprogenitor cells into these areas. Therefore, the aim of our study was to investigate the osteoconductive properties of pleiotrophin. We wanted to determine if pleiotrophin coating facilitates cellular adhesion and furthermore if this has any effect on hMSCs derived bone formation in an animal model. The results showed a dose dependent response of cellular adhesion in fibronectin samples, and cellular adhesion was facilitated with increasing pleiotrophin concentrations. Histologic findings taken after 5 weeks implantation in SCID mouse showed no presence of bone formation with only a dense fibrous connective tissue. Possible explanations for the results of the osteogenesis assay include inappropriate cell loading.

Effect of bFGF and fibroblasts combined with hyaluronic acid-based hydrogels on soft tissue augmentation: an experimental study in rats

  • Lee, Su Yeon;Park, Yongdoo;Hwang, Soon Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.47.1-47.10
    • /
    • 2019
  • Background: Hyaluronic acid (HA) has been applied as a primary biomaterial for temporary soft tissue augmentation and as a carrier for cells and the delivery of growth factors to promote tissue regeneration. Although HA derivatives are the most versatile soft tissue fillers on the market, they are resorbed early, within 3 to 12 months. To overcome their short duration, they can be combined with cells or growth factors. The purpose of this study was to investigate the stimulating effects of human fibroblasts and basic fibroblast growth factors (bFGF) on collagen synthesis during soft tissue augmentation by HA hydrogels and to compare these with the effects of a commercial HA derivative (Restylane®). Methods: The hydrogel group included four conditions. The first condition consisted of hydrogel (H) alone as a negative control, and the other three conditions were bFGF-containing hydrogel (HB), human fibroblast-containing hydrogel (HF), and human fibroblast/bFGF-containing hydrogel (HBF). In the Restylane® group (HGF), the hydrogel was replaced with Restylane® (R, RB, RF, RBF). The gels were implanted subdermally into the back of each nude mouse at four separate sites. Twelve nude mice were used for the hydrogel (n = 6) and Restylane® groups (n = 6). The specimens were harvested 8 weeks after implantation and assessed histomorphometrically, and collagen synthesis was evaluated by RT-PCR. Results: The hydrogel group showed good biocompatibility with the surrounding tissues and stimulated the formation of a fibrous matrix. HBF and HF showed significantly higher soft tissue synthesis compared to H (p < 0.05), and human collagen type I was well expressed in HB, HF, and HBF; HBF showed the strongest expression. The Restylane® filler was surrounded by a fibrous capsule without any soft tissue infiltration from the neighboring tissue, and collagen synthesis within the Restylane® filler could not be observed, even though no inflammatory reactions were observed. Conclusion: This study revealed that HA-based hydrogel alone or hydrogel combined with fibroblasts and/or bFGF can be effectively used for soft tissue augmentation.

부정항암탕(扶正抗癌湯)이 항종양(抗腫瘍) 면역반응(免疫反應)에 미치는 영향(影響) (The Effects of Bujeong hangamtang on antitumor Immune Response)

  • 임미량;문석재;문구;원진희;전병훈
    • 대한한의학회지
    • /
    • 제19권1호
    • /
    • pp.234-250
    • /
    • 1998
  • Bujeonghangamtang(扶正抗癌湯) has been used for cure of tumor as a traditional medicine without any experimental evidence to support the rational basis for its clinical use. This study was carroed out to evaluate the possible therapeutic or antitumoral effects of Bujeonghangamtang extract against tumor, and to carry out some mechanisms responsible for its effect. Some kinds of tumor were induced by .the typical application of 3-methylcholanthrene (MCA) or by the implantation(s.c) of malignant tumor cells such as leukemia cells(3LL cells) or sarcoma cells(Sl80 cells). Treatment of the Bujeonghangamtang water-extract (dailly 1mg/mouse, i. p.) was continued for 7 days prior to tumor induction and after that the treatment was lasted for 20 days. Against squamous cell carcinoma induced by MCA, Bujeonghangamtang decreased not only the frequency of tumor production but also the number and the weight of tumors per tumor bearing mice (TBM). Bujeongmngamtang also significantly suppressed the development of 3LL cell and S180 cell-implanted tumors in occurence-frequency and their size, and some developed tumors were regressed by the continuous treatment of Bujeonghangamtang extract into TBM. In vitro, treatment of Bujeonghangamtang extract had no effect on the growth of some kinds of cell line such as FsaII, A431 strain but significantly inhibited the proliferation of 3LL, S180 cells and augmented the DNA synthesis of mitogen-activated lymphocytes. Bujeonghangamtang also stimulated the migrative ability of leukocyte, the MIF and IL-2 production of T lymphocytes, but not IL 6 production of B cells. Bujeonghangamtang-administration to mice enhanced NK cells attivities. These results demonstrated that Bujeonghangamtang extract exhibited a significant prophylactic benefits against tumors and its antitumor activity was manifested depending on the type of tumor cells. And these results also suggested that effect of Bujeonghangamtang might be chiefly due to nonspecific enhancement of NK cell activities and cell-mediated immune responses.

  • PDF

Protective effect of Korean Red Ginseng against glucocorticoid-induced osteoporosis in vitro and in vivo

  • Kim, Jinhee;Lee, Hyejin;Kang, Ki Sung;Chun, Kwang-Hoon;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.46-53
    • /
    • 2015
  • Background: Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-induced osteoporosis mouse model were investigated. Methods: MC3T3-E1 cells were exposed to dexamethasone (Dex) with or without KRG and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Realtime polymerase chain reaction was performed to evaluate the apoptotic gene expression; osteogenic gene expression and alkaline phosphatase (ALP) activity were also measured. Western blotting was performed to evaluate the mitogen-activated protein kinase (MAPK) proteins. A GC-induced osteoporosis animal model was used for in vivo study. Results and conclusion: The MTT assay revealed that Korean Red Ginseng (KRG) prevents loss of cell viability caused by Dex-induced apoptosis in MC3T3E1 cells. Real-time polymerase chain reaction data showed that groups treated with both Dex and KRG exhibited lower mRNA levels of caspase-3 and -9, whereas the mRNA levels of Bcl2, IAPs, and XIAP increased. Moreover, groups treated with both Dex and KRG demonstrated increased mRNA levels of ALP, RUNX2, and bone morphogenic proteins as well as increased ALP activity in MC3T3-E1 cells, compared to cells treated with Dex only. In addition, KRG increased protein kinase B (AKT) phosphorylation and decreased c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, microcomputed tomography analysis of the femurs showed that GC implantation caused trabecular bone loss. However, a significant reduction of bone loss was observed in the KRG-treated group. These results suggest that the molecular mechanism of KRG in the GC-induced apoptosis may lead to the development of therapeutic strategies to prevent and/or delay osteoporosis.

배양연골막이 피복된 고효능 인공연골의 생체내 효과 (The Effect of Cultured Perichondrial Cell Sheet Covered Highly Active Engineered Cartilage: in vivo Comparative Assessment)

  • 박세일;문영미;정재호;장광호;안면환
    • 한국임상수의학회지
    • /
    • 제28권5호
    • /
    • pp.486-496
    • /
    • 2011
  • 조직공학적 인공연골재생에 대한 관심이 증가함에 따라 많은 연구들이 활발히 수행되고 있으나 임상적인 적용의 한계를 극복하기위한 고효능을 보유한 양질의 연골조직생산의 필요성이 증가되고 있다. 인공연골은 자연연골과는 달리 '연골막(perichondrium)'을 포함하고 있지 않기 때문에 장기간 생체 내에 삽입된 후에 서서히 흡수 또는 변형으로 임상적 활용에 한계가 있다고 있다. 이에 본 연구는 양질의 연골조직생산을 목적으로, 세포판 제작기법(cell sheet engineering technique) 을 기반으로 한 인체유래의 배양 연골막(cultured perichondrium)을 이용하여 만든 인공연골막 세포판(cultured perichondrial cell sheet)의 생체 내 특성을 비교 분석하고, 배양된 연골막을 피복하여 고효능화를 유도한 인공연골복합체의 생체내 재생효능 및 조직특성을 비교 평가하고자 하였다. 본 연구에서는 Athymic nude mouse의 피하이식모델(study 1, n = 12)을 이용하여 담체로 hydrogel을 이용한 배양연골막 복합체의 생체내 효능을 분석하였고, 중대형동물의 대량연골 결손시의 재생효능을 평가하기 위하여 개의 무릎연골에 $1{\times}2cm$의 대량연골 결손모델(study 2, n = 12)을 통하여 인공배양세포판을 이식하였다. 이식12주 후 이식편을 회수하여 생화학, 분자생물학 및 면역조직학 분석을 시행한 결과, 배양연골막 복합체의 생체내 효능이 단독이식군에 비해 변형이나 과증식 없이 우수한 결과를 나타내었다. 본 연구의 결과로 토대로 배양연골막을 피복한 인공연골막의 관절내 효과를 규명하여 실제 임상적용을 조기화하는 기반을 제공하고 인공연골의 문제점이었던 변형과 흡수를 줄인 고효능 인공연골 제작기법을 제공하는데 유용할 것으로 기대된다.

2-DDG가 FSa II 종양의 성장속도와 증식 능력, 신진대사에 미치는 영향 ; $^{31}P$-자기공명 분광기와 유세포 분석기를 이용한 연구 (Effects of 2-Deoxy-D-Glucose on Metabolic Status, Proliferative Capacity and Growth Rate of FSall Tumor: Observations made by In Vivo $^{31}P$-Nuclear Magnetic Resonance Spectroscopy and Flow Cytometry)

  • 장혜숙;최은경;조정길;임태환;이대근;이윤;조영주;김곤섭
    • Radiation Oncology Journal
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 1991
  • 2-ODG가 쥐의 섬유육종(FSall)에 미치는 영향에 대한 연구로 에너지 신진대사는 체내에서의 $^{31}P$-자기공명 분광기를 이용하여 관찰하였고 세포 증식 능력은 유세포 분석기를 사용하여 연구하였다. 성장속도는 10개의 세포를 $C_3Hf/Sed$ 쥐의 발등에 이식한 후 3차원적으로 측정하여 관찰하였다. 2-DDG를 투여한 경우에는 이식후 12일에 복강내로 주사하였다. 이식후 12일의 종양의 평균 크기는 $250mm^3$이었다. Fsall종양의 성장속도는 semilog graph의 기울기와 종양의 doubling time으로 측정하였다. 2-DDG를 투여한 후 성장속도가 감속되었다. 5~12일 사이의 성장속도의 기울기가 0.828, 종양의 Idubling time이 0.84일이고 대조군에서는 13~28일 사이의 기울기가 0.218, doubling time이 3.2일인 반면 2-DOG 투여군에서는 성장속도의 기울기가 0.135이고 doubling time이 5.1일이었다. $^{31}P$-자기공명 분광기를 이용하여 2-DDG의 영향을 분석해 본 결과 2-DDG 투여후 종양증식 속도의 감속과 더불어 phosphornonester (PME)와 inorganic phosphate (Pi)의증가속도가 감소하였다. 이것은 2-DDG투여후 세포의 괴사가 감소하였다는 의미가 있다. 유세포 분석기를 이용하여 종양의 증식 능력을 분석한 결과는 2-DDG 투여후 5-phase와 G2+M phase의 DNA분포가 크게 증가하였다. 이것은 2-DDG투여후 세포가 좀더 방사선에 민감한 cycle로 진행함을 의미하는 것으로 해석할 수 있다. 이에 저자들은 2-DDG가 Fsall 종양세포에 미치는 흥미있는 결과를 토대로 방사선 치료에 미치는 영향과실제 이용 가능성에 대하여 더 연구하고자 한다.

  • PDF