• Title/Summary/Keyword: Mounting method

Search Result 279, Processing Time 0.025 seconds

Multi-spectral adaptive vibration suppression of two-path active mounting systems with multi-NLMS algorithms

  • Yang Qiu;Dongwoo Hong;Byeongil Kim
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.393-402
    • /
    • 2023
  • Recently, hybrid and electric vehicles have been actively developed to replace internal combustion engine (ICE) vehicles. However, their vibrations and noise with complex spectra cause discomfort to drivers. To reduce the vibrations transmitted through primary excitation sources such as powertrains, structural changes have been introduced. However, the interference among different parts is a limitation. Thus, active mounting systems based on smart materials have been actively investigated to overcome these limitations. This study focuses on diminishing the source movement when a structure with two active mounting systems is excited to a single sinusoidal and a multi-frequency signal, which were investigated for source movement reduction. The overall structure was modeled based on the lumped parameter method. Active vibration control was implemented based on the modeled structure, and a multi-normalization least mean square (NLMS) algorithm was used to obtain the control input for the active mounting system. Furthermore, the performance of the NLMS algorithm was compared with that of the quantification method to demonstrate the performance of active vibration control. The results demonstrate that the vibration attenuation performance of the source component was improved.

Finite Element Vibration/Shock Analysis of Double Stage Elastic Mounting System with Viscoelastically Damped Foundation Structure (유한용소법을 이용한 점탄성 감쇠구조물이 포함된 2단 탄성마운트 시스템의 진동/충격응답 해석)

  • 정우진;류정수;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.508-516
    • /
    • 2000
  • To study the possibility of F.E.M application to vibration and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which has complicated damped sandwich cross-section is analyzed first. And then vibration responses experimental results and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which adopts the above damped structure as intermediate foundation were compared. As a result it is found that F.E.M could be effectively used in analyzing the vibration and shock response of double and multi-stage elastic mounting system with complicated damped foundation structures.

  • PDF

Effect of Sensitivity Variation for Mounting Methods of Accelerometer in Crash Test (충돌시험시 가속도 센서의 접착방법이 감도 변화에 미치는 영향)

  • Jang, Won-Ho;Kim, Ki-Oh;Beom, Hyen-Kyun;Kwon, Sung-Eun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.115-120
    • /
    • 2008
  • There are many typesof accelerometer sensor. There was mainly used high-g accelerometer to obtain data for vehicle in crash test. Accelerometer was mounted on test vehicle with mounting blocks. Test result can be influenced by condition of mounting i.e. bonding material and type of block. These influences can be evaluated to variation of sensitivity in calibration test. In this paper, Calibration test were carried out for 3 types of bonding material i.e. stud, beewax and double side tape. Other factor was taken into consideration by 3-types for mounting block. All test was conducted by sinusoidal signal vibrator up to 4500Hz. In order to investigate influence for sensitivity from different input voltage in the calibrator, the same test was repeated. Test results were compared with standard accelerometer data. Relative sensitivities and phases were showed small difference in sensitivity for bonding materials with one block, but significant one for another block and different input voltage below 1000Hz.

A Study on the Development of Inspection System of SMD Mounted on Cream Solder Using Machine Vision (머신비젼을 이용한 크림솔더상에 장착된 SMD의 검사시스템 개발에 관한 연구)

  • Shm, Dong-Won;Park, Kyoung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • This paper presents the development of the Inspection machine for SMD mounted on cream solder of PCB. There are mounting errors of SMD such as misalignment, missing part, wrong orientation, wrong polarity and so on. The main hardware of the system consists of a machine vision part and a motion control part. Operating software has been developed in GUI environment to help user convenience. The Inspection Jobs consist of two procedures, that is, creation of the inspection reference data and automatic inspection. The Inspection reference data has a tree structure of linked list including PCB information, blocks, components, windows, and inspection methods. This paper presents versatile inspection methods which include a section length method, a projection method and histogram method. Therefore, user can choose the suitable procedure for various components. Finally, the automatic Inspection procedure using the reference data checks the mounting errors of components.

  • PDF

The source identification of noise & vibration using characteristics of vibro-acoustic transmission (진동-음향 전달특성을 이용한 진동 및 소음원의 규명)

  • Oh, Jae-Eung;Kim, Dong-Sup;Kim, Woo-Taek;Kang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.495-499
    • /
    • 2000
  • The booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Thus the engine mounting system must be cautiously designed to reduce the noise. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To effectively use the method, the concept of 'effectiveness' is introduced to identify the contributions of each vibration sources and transmission paths to interior noise. When the magnitudes and phases of the forces due to the engine vibration are changed, the synthesized interior booming noise level is predicted by the vector synthesis diagram. Thus, the optimum characteristics of the forces are obtained through the simulations of the vector synthesis analysis. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.

  • PDF

Optimization Algorithm of Gantry Route Problem for Odd-type Surface Mount Device (이형 부품 표면실장기에 대한 겐트리 경로 문제의 최적 알고리즘)

  • Jeong, Jaewook;Tae, Hyunchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.

Vibration Reduction of a Large-sized Bus Roof through Change of the Factors Characteristics (인자 특성 변화를 통한 대형버스의 루프 진동 저감)

  • Kuk, Jong-Young;Park, Jong-Chan;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.138-144
    • /
    • 2010
  • If the vibration is occurred in a large-sized bus roof, it makes people annoying and complaining the quality of a large-sized bus. So in design stage, it must be considered. To assess vibration at the roof which is equipped with air conditioner in design stage, finite element model is constructed. Computer simulation analysis and experimental method are performed. The dynamic characteristics of the large-sized bus are found by using eigenvalue method. It is related with dynamic behavior. The running conditions of a large-sized bus are velocity and road condition which followed experimental conditions. And the frequency response of a large-sized bus is well correlated with analysis result. Modal participation method is used for finding major modes at each peak. Using this method, we found that front and rear suspension system, engine mounting system and roof structure are the major reasons of the roof vibration. To reduce vibration level of roof in a large-sized bus, spring stiffness of front and rear suspension system, spring stiffness of engine mounting system and roof structure are properly combined. From this study, the vibration characteristics of the roof structure of a large-sized bus can be to a satisfactory level.

Calibration of a UAV Based Low Altitude Multi-sensor Photogrammetric System (UAV기반 저고도 멀티센서 사진측량 시스템의 캘리브레이션)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • The geo-referencing accuracy of the images acquired by a UAV based multi-sensor system is affected by the accuracy of the mounting parameters involving the relationship between a camera and a GPS/INS system as well as the performance of a GPS/INS system. Therefore, the estimation of the accurate mounting parameters of a multi-sensor system is important. Currently, we are developing a low altitude multi-sensor system based on a UAV, which can monitor target areas in real time for rapid responses for emergency situations such as natural disasters and accidents. In this study, we suggest a system calibration method for the estimation of the mounting parameters of a multi-sensor system like our system. We also generate simulation data with the sensor specifications of our system, and derive an effective flight configuration and the number of ground control points for accurate and efficient system calibration by applying the proposed method to the simulated data. The experimental results indicate that the proposed method can estimate accurate mounting parameters using over five ground control points and flight configuration composed of six strips. In the near future, we plan to estimate mounting parameters of our system using the proposed method and evaluate the geo-referencing accuracy of the acquired sensory data.

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

The Source Identification of Noise Using Characteristics of Transmission and the Reduction of Interior Noise for Changing the Input Factor (전달특성을 이용한 소음원 규명과 입력요소 변경에 의한 실내소음 저감)

  • Lee, You-Yub
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1254-1261
    • /
    • 2007
  • The structure has several types of noise and booming noise of a vehicle is usually caused by the vibration of the vehicle's body transmitted from the engine through the mounting system. Vector synthesis analysis is performed to predict the booming noise when the characteristic of the engine mounting system is changed., i.e., when magnitudes and phases of vibratory forces after the mounts are altered. To use this method effectively, the concept of Multi-dimensional-analysis and Experimental Design are introduced to identify the contributions of each vibration sources and transmission paths to interior noise. It was used 3inputs/1output system and found the magnitudes and phases of the forces for minimizing the noise. Finally, the synthesized interior booming noise level is predicted by the vector synthesis diagram. It is shown that the vector synthesis method can be used to obtain the optimum design characteristic of the mounting system to control the interior booming noise of a vehicle.