• Title/Summary/Keyword: Mountainous wind

Search Result 99, Processing Time 0.029 seconds

A Study on the Prediction of SO2 Concentration in local Circulation of Mesoscale (중규모 국지순환에서 이산화황의 농도예측에 관한 연구)

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Jang, Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.277-284
    • /
    • 1996
  • The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using two-dimensional model by the combination of land-sea breezes and transport. The pollutants emitted into the simulated wind field in considering with the mesoscale local circulations. The typical effects of land-sea breezes and tophography of coastal area on the dispersion are discussed in detail, and the model is proved as an useful tool to pridict real time pollutant transport by the results of application studies in Pusan, Korea where the urbanized coastal area with mountainous topography. It was found that sulfur dioxide ($SO_2$) are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. Key words : land-sea breezes, sulfur dioxide, dispersion, coastal area.

  • PDF

Evaluation of Onshore Wind Resource Potential According to the Road Proximity (도로인접성에 따른 육상 풍력자원 잠재량 평가)

  • Kim, Hyun-Goo;Hwang, Hyo-Jung;Kang, Yong-Heack;Yun, Chang-Yeol
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.13-18
    • /
    • 2013
  • Wind turbines should generally be installed at a certain distance from a road to ensure passengers' safety. In Korea, there is no clear guidance as the Ministry of Environment first proposed a road setback distance of 400 m in the Onshore Wind Farm Siting Guidelines draft proposed in July 2012, and then modified it to 1.5 times the height of the wind turbine in October of the same year. This study analyzed the dynamic range of onshore wind resource potential according to how the road setback distance is set using the Korea Wind Atlas with 100m spatial resolution made by the Korea Institute of Energy Research, the transportation network of the Ministry of Construction and Transportation, and the forest road network of the Korea Forestry Service. Owing to the geographical characteristics of Korea, where mountainous terrain accounts for 70% of the total territory, the wind resource potential within 1 km from forest roads are estimated to be 14.3 GW, 14% of Korea's total wind resource potential. In addition, the construction distance of new road for transporting wind turbines from the existing road to a wind farm site is estimated as less than 2 km. Given the limited wind resource potential and geographical constraints, an assessment system that can maximize wind resource utilization and ensure road safety at the same time, and which takes into account the regional characteristics instead of applying the fixed road setback distance across-the-road, is required.

A Study on the Dispersion of Air Pollutants in Local Circulation of Mesoscale (중규모 국지 순환에서 대기 오염 물질의 확산에 관한 연구)

  • 이화운;오은주
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.39-47
    • /
    • 1994
  • Dispersion characteristics of air pollutants in the mountainous coastal area are investigated in considering with the mesoscale local circulations using a two dimensional numerical model with two kinds of topograpy of 500m and 300m. In the model, land-sea breezes and mountain-valley wind are mainly considered under the condition of the absence of large scale prevailing flow in the circulation analysis, and the pollutants dispersion is traced by the Lagrangian methods. According to the results, the wind velocity is affected by topography and is stronger in the case of 500m height mountain than that of 300m, the Pollutants that source is near the coast transported over the mountain and dispersed to behind inland area. It is classified that the topography change control affects the wind velocity and the circulations. The pollutants that source is different transported and concentrated to behind inland and/or diffused to the sea area by the combination of the wind system with topographic changes. The results can be applied to the air pollution control with the arrangement design of industrial area and the planning of coastal developments.

  • PDF

A wireless high-frequency anemometer instrumentation system for field measurements

  • Huang, Guoqing;Peng, Liuliu;Su, Yanwen;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.739-749
    • /
    • 2015
  • Field measurement of wind characteristics is of great significance for the wind engineering community. High-frequency anemometers such as ultrasonic anemometers are widely used to obtain the high-frequency fluctuating wind speed time history. However, conventional instrumentation systems may suffer from low efficiency, non-real time transmission and higher maintenance cost, and thus are not very appropriate in the field measurement of strong winds in remote areas such as mountain valleys. In order to improve the field measurement performance in those remote areas, a wireless high-frequency anemometer instrumentation system for field measurement has been developed. In this paper, the architecture of the proposed instrumentation system, and measured data transmission and treatment will be presented firstly. Then a comparison among existing instrumentation systems and the proposed one is made. It shows that the newly-developed system has considerable advantages. Furthermore, the application of this system to the bridge site located in the mountain valley is discussed. Finally, typical samples of measured data from this area are presented. It can be expected that the proposed system has a great application potential in the wind field measurement for remote areas such as the mountainous or island or coastal area, and hazardous structures such as ultra-voltage transmission tower, due to its real-time transmission, low cost and no manual collection of data and convenience.

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.

A Study on Disaster Risk Assessment in the Urban Open Spaces (도시 녹지 공간의 재해 위험도 평가 연구)

  • Yu, Joo-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.5
    • /
    • pp.13-27
    • /
    • 2015
  • This study examined disaster risk from climate change in urban open spaces. This study conducted an assessment depending on type of damage and type of open space, subcategorizing it into flood damage and wind damage, flat park and mountainous park, and classified the assessment items by type into natural factor, artificial factor, and social factor for the purpose of analysis. Our major findings from this study are as follows: To look at the standardized score for the disaster risk from flood damages in the case of a flat park, Asian Park was higher at 55.800 point than Seoul Forest at 51.775 point, and in the case of mountainous parks, Dogok Park was at 58.428 point and Baebongsan Park was at 58.374 point. To look at the standardized score for disaster risk from wind damage, in the case of a flat park, Asian Park was higher at 64.763 point than Seoul Forest at 61.054 point, and in the case of mountainous parks, Baebongsan Park was higher at 58.533 point than Dogok Park at 55.459 point. This study raised a question about the necessity for and value of this disaster risk assessment in open space from damages caused by climate change, established an assessment model for disaster risk from damages in open spaces only to attempt risk assessment. Disaster risk of urban green space was enhanced.

Study on Performance Improvement Air Cooled Condenser Considering Ambient Condition (대기 조건에 따른 공랭식 응축기 성능 저하 개선 연구)

  • Cha, Hun;Ryu, Gwang-Nyeon;Kim, Jung-Rae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • Air cooled condenser for power plant is used at inland area of desert or mountainous area because condenser coolant like sea water is not necessary. However, the performance of air cooled condenser is influenced by ambient condition such as wind speed and air temperature. Therefore, various devices have been designed to improve the performance of air cooled condenser. In this study, the CFD analysis for air cooled condenser was carried out according to wind speed and wind screen configuration. As wind speed increased from 3m/s to 7m/s, the fan flow rate was reduced about 15.76% and the rise of inlet air temperature was 5.55 degree of Celsius. When the suitable wind screen is equipped, the fan flow rate went up about 5.18% and inlet air temperature dropped by 2.08 degree of Celsius in comparison with original case without wind screen at 7m/s wind speed.

A Numerical Study on the Characteristics of High Resolution Wind Resource in Mountainous Areas Using Computational Fluid Dynamic Analysis (전산유동해석을 통한 산악 지역의 고해상도 풍력자원 특성에 관한 수치연구)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2011
  • The purpose of this paper is to evaluate the wind energy resources with high spatial resolution in Sunghak and Guduck mountains in Busan Metropolitan area under the various atmospheric stabilities. The numerical model used in this research is A2C (Atmosphere to CFD), mainly applied to assess the regional scale and microscale meteorological phenformin. Wind under the strong atmospheric stability moves around mountain side smoothly due to the strong potential energy. On the other hand, the cavity region on the lee side of mountain tends to be created and expanded as the atmospheric stability decrease. Annually the average distribution of wind power density, turbulence kinetic energy, and vertical wind shear help to explain quantitatively that wind resource near the northern side of Guduck mountain top is more suitable to establish wind energy complex than that in any other regions in the target area.

Effects of Strong Wind and Ozone on Localized Tree Decline in the Tanzawa Mountains of Japan

  • Suto, Hitoshi;Hattori, Yasuo;Tanaka, Nobukazu;Kohno, Yoshihisa
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • The numerical simulation of wind and ozone ($O_3$) transport in mountainous regions was performed with a computational fluid dynamics technique. A dry deposition model for $O_3$ was designed to estimate $O_3$ deposition in complex terrain, and the qualitative validity of the predicted $O_3$ concentration field was confirmed by comparison with observed data collected with passive samplers. The simulation revealed that wind velocity increases around ridge lines and peaks of mountains. The areas with strong wind corresponded well with the sites of tree decline at high altitudes, suggesting that it is an important factor in the localization of tree/forest decline. On the other hand, there is no direct relationship between forest decline and $O_3$ concentration. The $O_3$ concentration, however, tends to increase as wind velocity becomes higher, thus the $O_3$ concentration itself may be a potential secondary factor in the localized decline phenomena. While the diffusion flux of $O_3$ is not related to localized tree decline, the pattern of advection flux is related to those of high wind velocity and localized tree decline. These results suggest that strong wind with large advection flux of $O_3$ may play a key role in the promotion of tree/forest decline at high mountain ridges and peaks.

Atmospheric Pollutant Concentrations under the Influences of Internal Gravity Wave and Sea-Land Breeze Circulations in the Mountainous Coastal Regions (산악연안지역에서 내부중력파와 해륙풍순환 영향하의 대기오염농도)

  • Hyo Choi;Joon Choi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.18-33
    • /
    • 1995
  • Under the synoptic scale strong westerly winds flowing over the large steep mountains in the eastern coastal region, the strong downslope wind storms such as internal gravity waves should be generated in the lee-side of mountain. Int he daytime as sea breeze circulation induced by meso-scale thermal forcing from sea toward inland confines to the offshore side of coastal sites due to the eastward internal gravity waves. Thus, surface winds near the coastal seas were relatively weaker than those in the open sea or the inland sites. Evidently, two different kinds of atmospheric circulations such as an internal gravity wave circulation with westerly wind and a sea breeze circulation with both easterly wind near the sea surface and westerly in the upper level were apparently produced. Under this situation the atmospheric pollutants at Kangnung city should be trapped by two different circulations in the opposite directions and resulted in the high concentrations of Total Suspended Particles (TSP) and ozone (O3). At night a meso-scale land breeze from land toward the more intensification of westerly winds in the coastal regions. The concentrations of TSP controled by the strong surface winds blowing from the mountain side toward the coastal sea were relatively higher at night than those in the daytime case and the concentrations of O3 due to the downward transport of ozone from the upper atmosphere toward the surface were also much higher at night than during the day. Consequently, the atmospheric pollutant concentrations in the mountainous coastal region under the downslope wind storms were higher than those after and before the occurrences of wind storms.

  • PDF