• Title/Summary/Keyword: Mountain watershed

Search Result 71, Processing Time 0.027 seconds

Estimation of Trigger Rainfall for Threshold Runoff in Mountain River Watershed (산지하천 유역의 한계유출량 분석을 위한 기준우량 산정)

  • Kim, Dong Phil;Kim, Joo Hun;Lee, Dong Ryul
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.571-580
    • /
    • 2012
  • This study is on the purpose of leading Geomorphoclimatic Instantaneous Unit Hydrograph(GcIUH) by using GIS Techniques, and estimating trigger rainfall for predicting flash flood in Seolmacheon catchment, mountain river watershed. This study leads GcIUH by using GIS techniques, calculates NRCS-CN values for effective rainfall rate, and analyzes 2011 main rainfall events using estimated GcIUH. According to the results, the case of Memorial bridge does not exceed the amount of threshold runoff, however, the case of Sabang bridge shows that simulated peak flow, approximately $149.4m^3/s$, exceeds the threshold runoff. To estimate trigger rainfall, this study determines the depth of 50 year-frequency designed flood amount as a threshold water depth, and estimates trigger rainfall of flash flood in consideration of duration. Hereafter, this study will analyze various flood events, estimate the appropriateness of trigger rainfall as well as threshold runoff through this analysis, and develop prototype of Flash Flood Prediction System which is considered the characteristics of mountain river watershed on the basis of this estimation.

The Developmet and Application of GIS-Based Geomorpho-Hydrological Watershed Model (G2WMS) (GIS기반 지형수문유역모의 모형의 개발 및 적용 연구)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.123-133
    • /
    • 2009
  • In this study, we developed the GIS-based Geomorpho-hydrological Watershed Modeling System($G^{2}WMS$) which could consider both nonlilear rainfall-runoff relationship based on Geomorpho-Climatic Unit Hydrograph(GCUH) as well as watershed system inducing river routing. The developed new model was calibrated at the gaged rainfall events at natural watersheds and previewed to apply at the ungaged mountain basins, such as Sulma basin for small mountain basin and Andong-Dam basin for large scale basin, compared single with partitioned basin in the observed unit hydrographs and rainfall-discharge events. Finally, at the large scale Andong dam basin, we concluded that partitioned basin cases which including th nonlinear GCUH and river routing methods were superior to single basins which including the traditional methods in rainfall-discharge simulation at the mountain basins.

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale (대규모 산지유역 토양침식 평가를 위한 SEMMA 개선)

  • Shin, Seung Sook;Park, Sang Deog;Lee, Jong Seol;Lee, Kyu Song
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.885-896
    • /
    • 2013
  • SEMMA (Soil Erosion Model for Mountain Areas) should be revised to apply on mountain watershed of large scale. In this study, the basic structure of original SEMMA and methods to calculate main parameters are reviewed and the revised parameters are presented to expand a range of application. SEMMA-Ic is new model revised by a rate of vegetation cover which is substituted for index of vegetation structure to use specially NDVI for large scale areas. The correlation coefficient and the Nash-Sutcliffe simulation efficiency for the revised model decreased rather than those of original model. However the evaluation of the revised model on watershed showed the approximate simulation with measured sediment yield and the underestimated simulation when sediment yield is large. The additional research for channel erosion is needed so that soil erosion model for hillslopes is used to estimate sediment yield from a watershed.

Strategies for utilizing Urban Ventilation Corridor considering Local Cold Air in Watershed Areas - A Case Study of Uijeongbu and Gwacheon - (유역의 찬공기 특성을 고려한 도시 바람길 활용 전략 - 경기도 의정부 및 과천 일대를 사례로 -)

  • EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.133-151
    • /
    • 2019
  • This study aims to analyze cold air characteristics in the watershed areas and to suggest strategies for utilizing them in urban ventilation corridor plans. For this purpose, the Jungnangcheon watershed and Uijeongbu-si in the northern part of Gyeonggi province, and Anyangcheon watershed as well as Yangjaecheon Tancheon watershed and Gwacheon-si in the southern part were selected as study areas. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. Uijeongbu City is located on the main stream of the Jungnangcheon watershed, and the local cold air from the southern outskirts is an important part of Uijeongbu-si's overall ventilation corridor planning. In addition, the cold air generated in the vicinity of Mt. Sapae flows into the central business district near the city hall and plays a major role in regulating the thermal environment of the city. But, the cold air flows in the eastern part of Uijeongbu-si was not smoothly. The cold air flow generated in the east of Gwanak Mountain and in the west of Cheonggye Mountain was the most active in the northern part of Gwacheon-si. This flow is also a major ventilation corridor in Anyangcheon watershed as well as Yangjaecheon Tancheon watershed. But, the southern part where the cold air flow is not smooth is planed to be developed as 'Gwacheon Knowledge Information Town Public Housing District', so rapid development is expected in the future. Hence, it is suggested that an additional ventilation corridor plan should be established based on the detailed local wind flow analysis.

A Study on the Development of Topographical Variables and Algorithm for Mountain Classification (산지 경계 추출을 위한 지형학적 변수 선정과 알고리즘 개발)

  • Choi, Jungsun;Jang, Hyo Jin;Shim, Woo Jin;An, Yoosoon;Shin, Hyeshop;Lee, Seung-Jin;Park, Soo Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-18
    • /
    • 2018
  • In Korea, 64% of the land is known as mountain area, but the definition and classification standard of mountain are not clear. Demand for utilization and development of mountain area is increasing. In this situation, the unclear definition and scope of the mountain area can lead to the destruction of the mountain and the increase of disasters due to indiscreet permission of forestland use conversion. Therefore, this study analyzed the variables and criteria that can extract the mountain boundaries through the questionnaire survey and the terrain analysis. We developed a mountain boundary extraction algorithm that can classify topographic mountain by using selected variables. As a result, 72.1% of the total land was analyzed as mountain area. For the three catchment areas with different mountain area ratio, we compared the results with the existing data such as forestland map and cadastral map. We confirmed the differences in boundary and distribution of mountain. In a catchment area with predominantly mountainous area, the algorithmbased mountain classification results were judged to be wider than the mountain or forest of the two maps. On the other hand, in the basin where the non-mountainous region predominated, algorithm-based results yielded a lower mountain area ratio than the other two maps. In the two maps, we was able to confirm the distribution of fragmented mountains. However, these areas were classified as non-mountain areas in algorithm-based results. We concluded that this result occurred because of the algorithm, so it is necessary to refine and elaborate the algorithm afterward. Nevertheless, this algorithm can analyze the topographic variables and the optimal value by watershed that can distinguish the mountain area. The results of this study are significant in that the mountain boundaries were extracted considering the characteristics of different mountain topography by region. This study will help establish policies for stable mountain management.

Establishing the Managerial Boundary of the Baekdu-daegan(II) - In the Case of Semi-mountainous District - (백두대간 관리범위 설정에 관한 연구(II) - 준산악형 구간을 대상으로 -)

  • Kwon, Taeho;Choi, Song-Hyun;Yoo, Ki-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.62-74
    • /
    • 2004
  • Baekdu-daegan is the greatest mountain chain as well as the major ecological axis of the Korean Peninsula. In recent year, however, this area is faced with the various kinds of developmental urge. To cope adequately with these problems, this study was executed to prepare synthetic and systematic management with conservation-oriented strategy for Baekdu-daegan and to suggest spatially definite zoning for the managerial area. This study is to take into consideration the traditional concepts of stream and watershed as well as the actual disturbance on Baekdu-daegan area. The study area is selected with semi-mountainous type, from Namdeokyusan to Sosagogae. To propose the process for reasonably establishing the managerial boundary adjacent to the Ridges, the analysis was carried out that ArcGIS was mainly used for its analysis with digital maps, Landsat TM image and ArcGIS Hydro Model. Landsat TM image was classified by 5 land use types such as cultivated land, urban area, barren area, water body and forest. Based on these analyses results, the managerial boundaries as alternatives from the Ridges were produced by watershed expansion process, and used for tracing the changes of areal ratio of various land use types to the relevant watersheds to search out the adequate managerial boundary. The results show that watershed expansion process could be effective tool for establishing the managerial boundary, and eighth expanded watershed toward Muju-Gun(west) and fifth expanded watershed toward Geochang-Gun(east) might be included for the adequate managerial boundary of the case site.

  • PDF

Development of Digital Terrain Analysis for an Identification of Wetland Area at Mountainous Watershed (산지습지의 수문지형분석 방법론의 개발)

  • Jang, Eun-Se;Lee, Eun-Hyung;Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1473-1483
    • /
    • 2015
  • In this study, a digital terrain analysis had been performed for a mountainous watershed having wetlands. In order to consider the impact for wetland in the flow determination algorithm, the Laplace equation is implemented into the upslope accounting algorithm of wetness computation scheme. The computational algorithm of wetland to spatial contribution of downslope area and wetness was also developed to evaluate spatially distributed runoff due to the presence of wetland. Developed schemes were applied to Wangpichun watershed located Chuncuk mountain at Ulzingun, South Korea. Both spatial distribution of wetness and its histogram indicate that the developed scheme provides feasible consideration of wetland impact in spatial hydrologic analysis. The impact of wetland to downslope propagation pattern is also useful to evaluate spatially distributed runoff distribution.

Ecological Restoration on Degraded Ecosystem in the Tropical and Subtropical Region of China (중국 열대 및 아열대 훼손지 생태계 복원)

  • Jin Yong-Huan;Oh Koo-Kyoon;ZHAO Fuqiang
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.4
    • /
    • pp.465-474
    • /
    • 2004
  • Due to the rapid increase of human population and economic development, the natural ecosystem has been severely degraded. To restore the degraded ecosystem is extremely urgent and an important task in China. High biodiversity status in the natural ecosystem in tropical and subtropical regions in China has given high attention to the conservationists. The recent trends to the ecological restoration on degraded ecosystem in the tropical and subtropical regions of China were discussed for four different ecological recovery types: watershed ecosystems, wetlands, mining wastelands and mountain forests. The successful restoration case studies in tropical and subtropical regions of China were also discussed.

A study on mountain village problems for making forest resources - with Kangwon province as the central region - (삼림자원화(森林資源化)를 위한 산촌문제연구(山村問題硏究) -강원도(江原道)를 중심으로-)

  • Kwon, O-Bok;Woo, Jong-Choon
    • Journal of Forest and Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.19-32
    • /
    • 1993
  • Domestic timber comsumption has increased dramatically in the past few decades in this country. In addition, there is increasing demand for recreational opportunities in the forest areas and concern for watershed management and soil conservation. However, it is difficult to satisfy these demands for forest resources because many of woodland owerners who make such demands possible move from mountain villages to modern cities. Therefore, whether or not it is in the public interest to invest in rurbanization is a central policy question. This is a case study which deals with mountain village problems for making forest resources.

  • PDF