• Title/Summary/Keyword: Motor-integrated

Search Result 365, Processing Time 0.025 seconds

Integrated Model of Power Electronics, Electric Motor, and Gearbox for a Light EV

  • Hofman, Isabelle;Sergeant, Peter;Van den Bossche, Alex;Koroglu, Selim;Kesler, Selami
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1640-1653
    • /
    • 2015
  • This study presents a model of a drivetrain for an integrated design of a light electric vehicle (EV). For the drivetrain of each front wheel of the single-person, battery-powered EV tricycle consists of a battery, an inverter, and an outer rotor permanent magnet synchronous motor (PMSM), which is connected to an in-wheel gearbox. The efficiency of the inverter, motor, and gearbox is analyzed over the New European Driving Cycle. To calculate the losses and efficiency of the PMSM, the power electronics in the inverter and gearbox are used. The analytical models provide a fast, but less accurate result, useful for optimization purposes. To accurately predict the efficiency of the PMSM, a finite element model is used. The models are validated by test setups. Correspondingly, a good agreement between the measurements and the calculated results is achieved. A parameter study is performed to investigate the influence of the detailed component parameters (i.e., outer rotor radius, gear ratio, and number of pole pairs and stator slots) on the average efficiency of the drivetrain.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

A Case of Amyotrophic Lateral Sclerosis (근위축성 측삭 경화증 1예)

  • Lee, Beom-Jun;Jeon, Jin-Hee;Lew, Jae-Hwan;Kim, Tae-Yun
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.661-665
    • /
    • 2000
  • Amyotrophic Lateral Sclerosis(ALS) is a fatal neuromuscular disease characterized by progressive muscle weakness resulting in paralysis. ALS is characterized by both upper and lower motor neuron damage. Diagnostic tests include magnetic resonance imaging(MRI) electromyogram(EMG), muscle biopsy, and blood tests. In order for a definitive diagnosis of ALS to be made, damage must be evident in both upper and lower motor neurons. When three limbs are sufficiently affected, the diagnosis is ALS. There is no cure for ALS. We recently experienced one case of ALS, The patients was diagnosed as ALS by EMG and Symptoms. We diagnosed her as Wea jeung and treated by Herbal-medication based on the differentiation of symtoms. we report change of his symptoms through both western medical treatment and oriental medical treatment.

  • PDF

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

Development of an Integrated Design System for Solid Rocket Motors (고체 추진기관 통합 설계 시스템 개발)

  • Lee, Kang-Soo;Kim, Won-Hoon;Hwang, Tae-Kyung;Bae, Joo-Chan;Yang, June-Seo;Lee, Do-Hyeong;Seok, Jung-Ho;Choi, Byeong-Wook;Kwon, Hyuk-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-210
    • /
    • 2008
  • We developed an integrated design system for a solid rocket motors. We can do a conceptual design of a solid rocket motor easily and quickly with this system. It consists of four modules, or, size design, structure design, grain design and performance analysis module. Size design module determines the lengths and diameters of some major parts, which results in fixing the whole size of a motor. Structure design module has many master models, which enables a designer can do a conceptual design of almost parts of motor structures. Grain design module can design a solid fuel according to the result of structure design. Finally performance analysis module verifies the proposed design with the output from grain design module.

  • PDF

Development of Speed Reducer Integrated Driving system Apply to Vehicle Window Motor (차량용 윈도우 모터를 적용한 감속기 일체형 구동부 개발)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • In this study, design the core part of the driving of the robot. The power of the driving is window motor for automobiles obtained by using a method of directly to the motor shaft of the worm gear type. The decelerator consists of a worm gear to receive power from the motor shaft, Helical gear contact to worm gear, a pinion gear to be connected in line with the helical gear, and an output shaft to be engaged to the pinion gear. Drive system by using the power from the motor shaft based on the deceleration gear designed by the gear ratio set by the gear teeth increases the torque.

Digital Electronic Control Center for Low Voltage Motors (저압모터용 디지털 전자 배전반 개발)

  • Kim, Seong-Ryong;Kim, Sung-Ho;Koh, Kang-Hoon;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.463-468
    • /
    • 2004
  • The digital motor protection, measuring and control equipment, as called "The digital motor control equipment", for applying to single/three phase motors designed an integrated one unit and manufactured a compact size which will be installed on the motor control center. It performs serveral protection functions and motor starting function, and measures and indicates a serveral measurement. This paper proposes the design concept and functionality of new digital motor control equipment to improve control performance and integrate several equipments for the control and protection of the motor.

  • PDF

A Study on the Design and the Analysis of Canned-motor for SMART(System integrated Modular Advanced Reactor) using the Equivalent Circuit with Consideration of the Can-loss (Can손실이 고려된 등가회로도를 이용한 SMART용 Canned-motor 설계 및 해석에 관한 연구)

  • Gu, Dae-Hyeon;Gang, Do-Hyeon;Park, Jeong-U;Kim, Jong-In;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.483-493
    • /
    • 2001
  • The 3-phase induction is used for the MCP(main coolant pump) and the pure water is used for lubrication of bearing because of the difficulty of repair. Therefore the type of motor is the canned-motor that is welded by sealed can to prevent the stator and rotor from the lubricating water. A lot of Eddy currents are produced in the can because of the conductivity of material. And these eddy currents in the can are the most important cause that decrease the efficiency of induction motor. Therefore we have to find the method to decrease these eddy currents in the can for the improvement of efficiency of motor. In this paper, we proposed the method of design and analysis of canned-motor using equivalent circuit with consideration of can loss for the improvement of efficiency of motor.

  • PDF

Development of Integrated Control Logic of Wheel Motor Drive Electric Bus considering Stability and Driving Performance (휠 모터 구동 전기 버스의 차량 안정성 및 주행 성능을 고려한 통합 제어 로직 개발)

  • Jeong, Jongryeol;Choi, Jongdae;Shin, Changwoo;Lee, Daeheung;Lim, Wonsik;Park, Yeong-Il;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Recently, many types of electric vehicles including a heavy duty vehicle have been developed and released because of the better fuel economy and less gas products. In this study, research about an electric bus which utilizes the wheel motor drive system was conducted. The wheel motor is a motor connected to the wheel directly only with a simple gear so that the developer can utilize the space efficiently and the whole system efficiency will be better because of simple structure. However, because it is different from former types of vehicles which use the differential gear, the development of the integrated control logic is required in order to meet the vehicle stability and driving performance. The developed control logic is composed with direct yaw moment control, regenerative braking control and slip control logics. It is compared to the control logics which does not consist of direct yaw moment control and slip control when the vehicle is exposed in tough situations. For the unification of the control logic, a few maps were developed and applied to determine the output torque of each motor according to the driving status. As a result, it is shown that the developed control logic is more safe and well follow the target speed than the other control logic applied simulations.