• Title/Summary/Keyword: Motor-Generator set

Search Result 43, Processing Time 0.018 seconds

PHLIS-Based Characteristics Analysis of a 2 MW Class Tidal Current Power Generation System (PHILS 기반 2 MW급 조류발전시스템 특성 분석)

  • Go, Byeong Soo;Sung, Hae Jin;Park, Minwon;Yu, In Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.665-670
    • /
    • 2014
  • In this paper, characteristics of a tidal current power generation system are analysis using power hardware-in-the-loop simulation (PHILS). A 10 kW motor generator set is connected to the real grid through a fabricated 10 kW back to back converter. A power control scheme is applied to the back to back converter. A 2 MW class tidal current turbine is modeled in real time digital simulator (RTDS). Generating voltage and current from the 10 kW PMSG is applied to a 2 MW class tidal current turbine in the RTDS using PHILS. The PHILS results depict the rotation speed, power coefficient, pitch angle, tip-speed ratio, and output power of tidal current turbine. The PHILS results in this paper can contribute to the increasing reliability and stability of the tidal current turbines connected to the grid using PHILS.

Controlling a lamprey-based robot with an electronic nervous system

  • Westphal, A.;Rulkov, N.F.;Ayers, J.;Brady, D.;Hunt, M.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.39-52
    • /
    • 2011
  • We are developing a biomimetic robot based on the Sea Lamprey. The robot consists of a cylindrical electronics bay propelled by an undulatory body axis. Shape memory alloy (SMA) actuators generate propagating flexion waves in five undulatory segments of a polyurethane strip. The behavior of the robot is controlled by an electronic nervous system (ENS) composed of networks of discrete-time map-based neurons and synapses that execute on a digital signal processing chip. Motor neuron action potentials gate power transistors that apply current to the SMA actuators. The ENS consists of a set of segmental central pattern generators (CPGs), modulated by layered command and coordinating neuron networks, that integrate input from exteroceptive sensors including a compass, accelerometers, inclinometers and a short baseline sonar array (SBA). The CPGs instantiate the 3-element hemi-segmental network model established from physiological studies. Anterior and posterior propagating pathways between CPGs mediate intersegmental coordination to generate flexion waves for forward and backward swimming. The command network mediates layered exteroceptive reflexes for homing, primary orientation, and impediment compensation. The SBA allows homing on a sonar beacon by indicating deviations in azimuth and inclination. Inclinometers actuate a bending segment between the hull and undulator to allow climb and dive. Accelerometers can distinguish collisions from impediment to allow compensatory reflexes. Modulatory commands mediate speed control and turning. A SBA communications interface is being developed to allow supervised reactive autonomy.

The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance (SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석)

  • Lee, Daeheung;Jeong, Jongryeol;Park, Yeongil;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.