• Title/Summary/Keyword: Motor power

Search Result 4,299, Processing Time 0.036 seconds

Design and Analysis of Characteristics of Interior Permanent Magnet BLDC Motor That Consider Shape-Ratio of Permanent Magnet (영구자석 형상비를 고려한 영구자석 매입형 BLDC 전동기 설계 및 특성해석)

  • Yun Keun-Young;Rhyu Se-Hyun;Yang Byoung-Yull;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Now a day, owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) BLOC with high efficiency and high power in electric motion vehicle is increasing. IPM BLDC motor has permanent magnets in the rotor. Because it has two different flux paths, magnetic reluctance differences are generated in d-axis and q-axis. As the result of the inductance differences that are generated by the saliency(magnetic reluctance differences) in the rotor, the motor has structure advantage that has the additional reluctance torque except a magnet torque and because magnet is situated inside the rotor, the mechanical structure is strong. Therefore IPM BLDC motor makes possible to have high speed and high power. This paper presents a design and characteristics analysis of IPM BLDC motor for electric vehicle. To design IPM BLDC motor, surface mounted permanent magnet(SPM) BLDC motor is used as the initial design model. According to the shape-ratio() of permanent magnet, the characteristic of IPM BLDC motor is analyzed by Finite element method (FEM). Characteristics analysis results of the designed motor are compared with the experimental results.

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

Simulation Study of a New Approach for Field Weakening Control of PMSM

  • Elsayed, Mohamed Taha;Mahgoub, Osama Ahmed;Zaid, Sherif Ahmed
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.136-144
    • /
    • 2012
  • In this paper, the different techniques for the field weakening, also known as constant power speed range (CPSR) operation, for permanent magnet synchronous motor (PMSM) will be introduced and analysed. Field weakening of PMSM, can be done using either vector control (VC) or conventional phase in advance (CPA). Implementation of these techniques depending on some features and constrains. Most of these features and constrains came from the motor parameters. One of these constrains is the motor inductance which determining whether the motor can be driven in the CPSR or not. A new approach for the field weakening will be discussed and to be verified to overcome this constrain. The new approach will be verified through both techniques VC and CPA.

Development of 5kW Interior Permanent Magnet Synchronous Motor for Electric Golf-car (전동 골프카용 5kW급 매입형 영구자석 동기전동기 개발)

  • Oh, Young-Jin;Moon, Byeong-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.151-153
    • /
    • 2007
  • Recently study on components for a electric golf car and a utility car driven by a electric motor has been performed actively, and the study on a drive motor, a inverter and a battery focuses on a small, light weight and high power density source to improve fuel efficiency using limited electric energy. Especially, since a utility car such as a golf car performance depends on initial acceleration and maximum speed capability, a drive system requires high power and large and wide operation area, This study therefore investigates on the interior permanent magnet synchronous motor with high power density and wide operation, and is verified with the test result after design and characteristic analysis is performed.

  • PDF

A Study on the Development of the BLDC Motor for 42V Automotive EHPS (42V 자동차 EHPS용 BLDC 모터 개발에 관한 연구)

  • Rhyu, Se-Hyun;Kim, Young-Kyoun;Hur, Jin;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.119-121
    • /
    • 2007
  • The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. Owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) type BLDC with high efficiency and high power in electric motion vehicle is increasing. This paper presents the design of the BLBC motor for EHPS(Electro-Hydraulic Power Steering) in 42V system and verified the characteristics by simulation and test results.

  • PDF

Analysis of the Characteristics of the Tidal Current Power Generation System Using Motor-Generator Set (전동기-발전기 실험장치(Motor-Generator Set)를 이용한 조류발전 시스템의 특성 분석)

  • An, Won-Young;Lim, Hyung-Tack;Lee, Seok-Hyun;Kim, Gun-Su;Jo, Chul-Hee
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.19-24
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured output power in M-G Set (Motor-Generator Set) and MATLAB/Simulink. We installed M-G Set (Motor-Generator Set) and did a simulation using MATLAB/Smulink. The simulation consisted of the tidal current turbine, PMSG, converter, and three-phase PWM inverter. Also, the speed control of the generator was performed using machine side converter. And we measured output voltage, current, power of the generator and the output power of three-phase PWM inverter.

Power Regenerating Drive of a Induction Motor by Field Acceleration Method (자계가속법에 의한 유도 전동기의 전력회생 구동)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Seoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper presents a solution that an analytical model for an induction motor and the formula of regenerative power and instantaneous torque are derived. based on the spiral vector. The torque is controlled linearly through variations of the slip angular velocity, based on the field acceleration method (FAM). And also PWM inverter fed induction motor drives is schemed to be easily a regenerative drive. The voltage source inverter fed induction motor drives that regenerative power occurs with back current type is presented, to easily controlled the feedback power and to proper the adaption of energy shaving drives. The experimental tests verify the performance of the FAM, proving that food behavior of the drive is achieved in the transient and steady state operating condition, and are discussed to save the power that regenerative power is measured at the operating acceleration or deceleration of servo system.

Comparison Analysis on Efficiency and Operating Characteristic between Induction and BLDC Motor according to the Load Variation Based on Battery Power Source for Electric Propulsion System of Small Ships (소형 선박 추진용 축전지 전원 기반 유도모터와 BLDC모터의 부하별 운전 특성 및 효율 비교 분석)

  • Yeong, T.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • This paper aims at investigation some operating characteristics and energy usage efficiency of a induction motor and a BLDC motor considering electric propulsion system in a small ship based on battery source. At first, performance curves of discharge voltage from the battery and current from each motor according to the load variations were analyzed. Next, variations of motor torque and rotational speed versus load change at each motor were analyzed. Finally, efficiency of energy usage of the battery and available navigation distance were compared each other. Through some comparisons and analyses, it was cleared that the BLDC motor is more suitable for the motor of the electric propulsion system in small ships based on battery source. It is expected that the results can be used as useful data for design of the electric propulsion system with batteries.

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.