• Title/Summary/Keyword: Motor power

Search Result 4,299, Processing Time 0.031 seconds

The driving system design of walking robot which uses the automotive window motor (자동차용 윈도우 모터를 이용한 보행로봇 구동부 설계)

  • YOUM, K.W.;HAM, S.H.;OH, S.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.137-141
    • /
    • 2011
  • Driving mechanism, the central part of a robot, was designed in this study. Power for the motive drive was acquired by directly connecting the motor shaft in worm shape of the low-end DC motor, car window motor, to a decelerator. The decelerator consists of a worm gear to receive power from the motor shaft, a pinion gear to be connected in line with the worm gear, and an output shaft to be engaged to the pinion gear. Motion driving is achieved by the power from the motor shaft with the designed gears, transferred to the deceleration mechanism and to the output gear.

Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior

  • Eun, In-Ung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.61-68
    • /
    • 2001
  • A linear motor has a lot of advantages in comparison with conventional feed mechanisms: high transitional speed, acceleration, high control performance and good positioning at high speed. Through the omission of a power transfer element, the linear motor shows no wear and no backlash, has along lifetime and is easy to assemble. Recently, the two types of linear motors, asynchronous and synchronous linear motors, are often applied to machine tools as a fast feed mechanism. In this paper, a comparison between the two types of linear motors as to power loss and thermal behavior is made. The heat sources of the linear motor-the electrical power loss in the motor and the frictional heat on the linear guidance-are measured and compared. Also, the temperature on the linear motor and machine structure is measured and presented.

  • PDF

An Experimental Study on the Design and Performance Characteristics of Vane type Pneumatic Motors (공압베인모터 설계 및 성능특성에 관한 실험적 고찰)

  • 김동수;김유일;김미성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.472-475
    • /
    • 1997
  • It is well known that pneumatic motors convert fluid power into mechanical power with a low efficiency. The Value of the efficiency depends on several factors, of which the most important are ; type of motor, speed, supply pressure, sie and geometry of the motor. This paper presents an analytical and experimental study of the performance of he vane type pneumatic motors. This investigation deals with all the pneumatic motors. This investigation deals with all the pneumatic motors. This investigation deals with all the major aspects of the air flow through a vane type pneumatic motor and pints out which are the main causes of the low efficiency of the motor, and therefore indicates which changes in a motor design an lead to optimum performance.

  • PDF

Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor (교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.

Development of Composite Load Models of Power Systems using On-line Measurement Data

  • Choi Byoung-Kon;Chiang Hsiao Dong;Li Yinhong;Chen Yung Tien;Huang Der Hua;Lauby Mark G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.161-169
    • /
    • 2006
  • Load representation has a significant impact on power system analysis and control results. In this paper, composite load models are developed based on on-line measurement data from a practical power system. Three types of static-dynamic load models are derived: general ZIP-induction motor model, Exponential-induction motor model and Z-induction motor model. For the dynamic induction motor model, two different third-order induction motor models are studied. The performances in modeling real and reactive power behaviors by composite load models are compared with other dynamic load models in terms of relative mismatch error. In addition, numerical consideration of ill-conditioned parameters is addressed based on trajectory sensitivity. Numerical studies indicate that the developed composite load models can accurately capture the dynamic behaviors of loads during disturbance.

A study on lightening the weight of an induction motor satisfying maximum power rating (순시 정격을 고려한 유도기 경량화에 관한 연구)

  • Park, Jeong-Tae;Lee, Cheol-Gyun;Kim, Joung-Koo;Jung, Hyun-Kyo;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.162-164
    • /
    • 1994
  • This paper presents the optimal design method of an induction motor for electric vehicle which minimizes the weight of motor and satisfies maximum power rating at the same time. Effects of motor parameters on the dimensions and weight of motor is investigated. Optimal routine which is used in this paper is simulated annealing technique.

  • PDF

Design and Implementation of a Motor Power Change Speed Device for Micro-controller (Micro-controller 방식에 의한 Motor Power 변속장치의 설계와 구현)

  • 김정래
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2003
  • This study was carried out develope a motor power change speed device of motor by used micro- controller. This system was producted a auto-change speed device which switching frequency was 1,000MHz by used a auto- controller. It had a continuous output current such as 5A, 11A, 25A, 35A, 50A. It used a variable voltage from 9V to 18V(Maximum). We designed hardware of and software of micro-controller, we are made up of a auto cut-off function by 3.7V for detected power-loss prevention.

  • PDF

Analysis of Vibration Noise Spectrum in Motor-Driven Power Steering System (Motor-Driven Power Steering 시스템의 진동 소음 스펙트럼 분석)

  • Park, Han Young;Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2018
  • Unlike the hydraulic power steering (HPS) system, which operates by the high pressure of a fluid obtained from the engine power, the motor-driven power steering (MDPS) system uses an electric motor to steer the wheel without consuming engine power. To steer the wheel with an electric motor, a worm wheel and a worm gear rotating between the steering shaft and motor are required. Any imperfection during the construction of an MDPS system or in a composing part creates noise and vibration, which can be sensed by a driver. To solve the noise and vibration problems, each part must be designed to not resonate with other parts. In this work, we developed the measurement and analysis systems to obtain the noise and the vibration of an automobile MDPS system. A signal analyzer was equipped with a 96 kHz, 24-bit ADC and a 150 MHz digital signal processor. The predetermined threshold value of the vibration in the MDPS system was used to determine the pass/fail, and the results were displayed on the screen. Our system can be used in the fabrication line to swiftly determine any imperfections in the MDPS system construction.

Optimal Unity Power Factor Control of Permanent Magnet Synchronous Motor with q-axis Field by Inverse LQ Method

  • Takami, Hiroshi
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.117-126
    • /
    • 2001
  • A synchronous motor(SM) with q-axis special field winding of which the q-axis field-current compensates and cancels armature reaction can be driven at unity power factor under the conditions of transient state as well as steady state. The motor operates in high efficiency in all conditions. However, in order to obtain maximum performance of the motor, it is required that the time constant of armature circuit corresponds to that of q-axis field circuit. Inverse LQ(ILQ) design method on a basis of the pole assignment is suitable for this problem:(1) The time constants of the output responses can be designed for desired specifications, (2) Relations between feedback gains and response of closed loop system are very clear and (3) Optimal solutions can be given by simple procedure of ILQ method without solving the Ricaati's equation, compared to the usual LQ design method. Accordingly, the ILQ method can make the responses of armature current and q-axis field-current correspond. In this paper, it is proved by numerical simulations and experiments that the ILQ method is very effective for optimal regulator design of this plant and realizes a high-performance motor with unity power factor and high efficiency.

  • PDF

A Study on Efficiency Improvement of Power Conversion System for Escalator (에스컬레이터용 전력변환장치 효율 개선에 관한 연구)

  • Cho, Su-Eog
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.525-529
    • /
    • 2016
  • In the case of a motor system that converts electrical energy into mechanical energy, the region of the motor and that of the generator coexists. In the case of an escalator, the ascending escalator is operated by the motor, whereas the descending escalator is operated by the generator according to the load. To evaluate the proposed method, this study reduces the power of the ascending escalator up to approximately 35% by sharing the regeneration power of the descending escalator. The loss of transfer power nearly exists in the case of the proposed method. Furthermore, the lifetime of the DC link condenser can be extended because it is connected in parallel, thus leading to a twofold increase in capacity.