• 제목/요약/키워드: Motor power

검색결과 4,299건 처리시간 0.028초

Design Optimization of Linear Synchronous Motors for Overall Improvement of Thrust, Efficiency, Power Factor and Material Consumption

  • Vaez-Zadeh, Sadegh;Hosseini, Monir Sadat
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.105-111
    • /
    • 2011
  • By having accurate knowledge of the magnetic field distribution and the thrust calculation in linear synchronous motors, assessing the performance and optimization of the motor design are possible. In this paper, after carrying out a performance analysis of a single-sided wound secondary linear synchronous motor by varying the motor design parameters in a layer model and a d-q model, machine single- and multi-objective design optimizations are carried out to improve the thrust density of the motor based on the motor weight and the motor efficiency multiplied by its power factor by defining various objective functions including a flexible objective function. A genetic algorithm is employed to search for the optimal design. The results confirm that an overall improvement in the thrust mean, efficiency multiplied by the power factor, and thrust to the motor weight ratio are obtained. Several design conclusions are drawn from the motor analysis and the design optimization. Finally, a finite element analysis is employed to evaluate the effectiveness of the employed machine models and the proposed optimization method.

순간전압강하 극복을 위한 대용량 유도전동기 제어방식 설계 및 해석 (Design and Analysis of Large Induction Motor Control Coping with Voltage Sag)

  • 조성돈;임성호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1056-1058
    • /
    • 1998
  • Voltage dips caused by transmission system faults are usually of a short duration. High speed relaying and breaker operation will typically limit the disturbance to 0.1 seconds. Most motor controllers obtain their control power directly from the bus by means of a control transformer. Under this condition, a voltage dip can cause the contactor to drop out. disconnecting the motor from the line. The rapid re-energizing of the controller is in effect a fast reclosure which may result in motor damage. The time delay re-energizing of controller will result in a greater loss of speed and possibly loss of stability. Other means of controller can be used to prevent the motor from being disconnected from line during the fault. This can be accomplished by DC power controller or mechanically latched controller. This paper demonstrates that DC power controller or mechanically latched type controller to prevent the motor from being disconnected from line during the fault is, the most effective in minimizing speed reduction, transient motor current, transient motor torque and transient shaft torque by EMTP calculation.

  • PDF

공극 제어에 의한 Axial Flux Motor의 최적 운전 특성 (Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap)

  • 오성철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권11호
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.

공기 동압 베어링을 갖는 디지털 라이트닝 프로세서 모터용 코어리스 및 슬롯리스 BLDC 모터의 특성 분석 및 비교 (Characteristics Analysis and Comparison of Careless and Slotless BLDC Motor used in Digital Lightening Processor Motor with Air-Dynamic Bearing)

  • 양이우;김영석;김상욱
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1039-1046
    • /
    • 2007
  • This paper presents the analysis for power consumption, mechanical vibration and acoustic noise characteristics of the Coreless and Slotless Brushless DC motor in Digital Lightening Processor(DLP) Motor with the Air-Dynamic Bearing. The Coreless BLDC motor has not the stator yoke as well as the stator slot to remove the unbalance force by the interaction between the stator yoke and Air-Dynamic Bearing clearance. The assembling tolerance and the processing error make the air-gap difference between the magnet and the stator yoke .which occurs the unbalanced electro-magnetic force in the Slotless BLDC motor. It imposes the air-dynamic bearing on the disturbance force and makes the Air-Dynamic Bearing vibrated and noised. Also, The attractive force between the magnet and the silicon steel stator yoke increases the power consumption. In this paper, the power consumption, mechanical vibration and acoustic noise of the Coreless BLDC motor and the Slotless BLDC motor with the silicon steel stator yoke are simulated, analyzed, and tested using the manufactured proto-type motors with Air-Dynamic bearing. The simulated and tested results present that the Coreless BLDC motor without the silicon steel stator yoke has the lower mechanical vibration and noise ,and lower power consumption than the Slotless BLDC motor with the silicon steel stator yoke in Digital Lightening Processor Motor with Air-Dynamic Bearing.

전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배 (Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors)

  • 김정민
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

파워테일게이트의 DC모터구동회로에 적용된 EMI 저감기법에 대한 연구 (Study of EMI Suppression Method Applied on DC Motor Driver of Power Tail Gate)

  • 김영식;윤용수;정훈;공준호;이상호
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents electromagnetic interference(EMI) suppression method applied on the direct current(DC) motor driver for power tail gate control. EMI noise is generated by the fast switching of power devices connected to electric loads. It has become a matter of concern because of the vast increase in the number and sophistication of electronic system in automotive environment. The proposed EMI reduction method is based on the principle of reducing the transient speed of power devices by changing the parameters of the driver circuit related to the power MOSFET. In this paper, power losses were calculated by loss equations and thermal simulation was used to evaluate the effect on printed circuit board. Based on these results, the DC motor driver was fabricated and tested. The proposed method can help to design a DC motor driver which allows it to obtain an acceptable compromise between power losses and EMI.

동력객차 동력실 내부의 열유체 유동의 수치 시뮬레이션 (A Numerical Simulation of Heat and Fluid Flow in the Motor Block Room of a Motorized Car)

  • 김학범;허재경;이기열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.589-594
    • /
    • 1998
  • Heat and fluid flow in the motor block room of a motorized car is numerically simulated. The motorized car, composed of a motor block room and a passenger room, supplies additional Power to achieve the design speed. A motor block, a transformer, and a fan are equipped in the motor block room. Flow phenomena in the ducts on the motor block and power transformer are investigated. Also, the three dimensional heat and fluid flow in the motor block room is simulated to give a qualitative information of the flow characteristics.

  • PDF

선행각을 이용한 팬용 플럭스 스위칭 전동기 드라이브에 대한 연구 (A Study on Flux Switching Motor drive for Fan Application with Advance angle)

  • 김남훈;구본삼
    • 조명전기설비학회논문지
    • /
    • 제23권6호
    • /
    • pp.89-95
    • /
    • 2009
  • 최근에는 파워툴(power tools)과 가전 제풀에 있어서 전자적인 전류(commutation)를 사용하는 새로운 형태의 브러시리스 전동기인 플럭스 스위칭 전동기(Flux switching motor)에 대한 관심이 점차적으로 증가되고 있으며, 특히 팬과 펌프 시장에 있어서는 그린 정책으로 인하여 플럭스 스위칭 전동기에 대한 관심이 급격히 증가되고 있다. 플럭스 스위칭 전동기는 유도전동기에 비해서는 높은 전력 밀도(power density)와 상대적으로 높은 효율, 그리고 브러시리스 DC 전동기에 비해서는 간단한 전동기 구조와 가격 경쟁력이라는 장점을 가지고 있다. 따라서 본 논문에서는 팬 용도로 제작된 12/6 폴을 가지는 플럭스 스위칭 전동기의 드라이브 설계와 동작원리에 대해서 나타내고, 팬 용도로 제작된 프로토타입 플럭스 스위칭 전동기의 타당성을 검증하기 위해서 IMS320F2812 DSP와 일반적인 인버터를 이용한 실험 결과를 제시한다.

Design of PM Excited Transverse Flux Linear Motor of Inner Mover Type

  • Kang Do-Hyun;Ahn Jong-Bo;Kim Ji-Won;Chang Jung-Hwan;Jung Soo-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권2호
    • /
    • pp.137-141
    • /
    • 2005
  • A transverse flux, PM-exited linear motor (TFM-LM) with inner mover was designed and built. Its output power density is higher and its weight is lower than those of the conventional PM exited linear synchronous motors (PM LSM). To obtain the maximum thrust force under the given volume, the thrust force density with respect to the ratio of the slot width and the length of pole pitch is analyzed by the 3-dimension finite element method (FEM). Finally, calculated static thrust forces was compared with the experimental values. The calculated and measured performance of the transverse flux, PM-exited linear motor with inner mover revealed great potential for system improvements by reducing the mass of the linear motor. For examples, when this motor was applied to a ropeless elevator, it was possible to increase the power density by more than 400% over the conventional PM-LSM. The results of this study recommend this type of motor for the ropeless elevator or gearless direct linear driving system.

전력변환기를 이용한 영구자석 동기전동기용 실시간 시뮬레이터 (Real Time Simulator for a Permanent Magnet Synchronous Motor with Power Converter)

  • 오현철;김학원;조관열
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.114-124
    • /
    • 2013
  • Recently, the real time simulator to develop the inverter drive board and motor control algorithm for high power induction motor and PM synchronous motor is required. In this paper, the real time simulator based on the voltage control for a PM synchronous motor is proposed. The resistor, inductor, and the induced voltage for the modeling of a PM synchronous motor is implemented by the power converter including the LCL filter and the PWM rectifier. The induced voltage of a PM synchronous motor is simulated by the capacitor voltage of the LCL filter, which is controlled by PI voltage controller and the deadbeat current controller. The operation and the simulated characteristics of the proposed real time simulator for a PM synchronous motor is verified by the simulation.