• Title/Summary/Keyword: Motor neuron disease

Search Result 50, Processing Time 0.03 seconds

Normal Walking Versus Toe-walking in Healthy Subjects: An Electromyographic Analysis (정상 보행과 발가락 보행의 하지 근육 근 활성도 비교)

  • Kim, Tack-Hoon;Choi, Houng-Sik;Kim, Chang-In;Yi, Jin-Bock
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This study was designed to identify the effects of walking conditions (normal walking vs. toe-walking) on electromyographic (EMG) activity of gastrocnemius, tibialis anterior, and soleus muscle. Seven healthy adult males participated in this study. The exclusion criteria were orthopedic or neurologic disease, congenital anomaly or acquired deformity, or pain in low back or lower extremities. The maximal voluntary isometric contraction for each muscle was used for the reference contraction, and EMG activity of each muscle during normal walking and toe-walking was expressed as a percentage of reference contraction. The gait cycle was determined with two foot switches, and gait was normalized as 100% gait cycle for each condition. The maximal values of EMG activity in terminal stance (30~50% of gait cycle) of each condition were compared for data analysis. No significant differences were found in EMG activity of the tibialis anterior and soleus (p>.05), whereas significant decrement was found in EMG activity of gastrocnemius during toe-walking compared to normal walking (p<.05). There is a limitation to generalize the results of this study, because small number of subjects participated for this study and only EMG was used for data collection. The treatment methods should be developed to improve gait efficiency by substituting the weakened muscles secondary to upper motor neuron, or by strengthening the distal muscles in lower extremity.

  • PDF

Spinal Epidural Lipomatosis Secondary to Hypothyroidism in a Siberian Husky Dog

  • Jeong, Ju-Young;Hwang, Tae-Sung;Song, Kun-Ho;Song, Joong-Hyun
    • Journal of Veterinary Clinics
    • /
    • v.39 no.5
    • /
    • pp.235-239
    • /
    • 2022
  • A 10-year-old neutered male Siberian Husky presented with paraparesis and severe lethargy. On physical examination, the patient was unable to weight-bear and walk and exhibited significant muscle mass loss in both hindlimbs and generalized truncal alopecia with a dull coat of hair. On neurological examination, cranial lumbar vertebral pain, hind limb cross-extensor reflex, delayed hindlimb postural reaction, upper motor neuron bladder dysfunction, and total absence of cutaneous trunci reflex were identified. Computed tomography revealed diffuse idiopathic skeletal hyperostosis and spondylosis deformans of the cervical and thoracolumbar vertebrae. In addition, a generalized decrease in bone mineral density of the vertebrae was identified. Magnetic resonance imaging showed hyperplasia of the epidural fat compressing the spinal cord in the thoracolumbar region and concurrent mild multiple intervertebral disc herniations. No specific findings were observed in cerebrospinal fluid analysis. Blood analysis of thyroid function revealed decreased total T4 and free T4 levels, and increased TSH levels. The patient was tentatively diagnosed with spinal epidural lipomatosis (SEL) secondary to hypothyroidism. The patient was treated with levothyroxine, firocoxib, and gabapentin. Clinical signs gradually improved, and the patient showed normal ambulation 40 days after treatment initiation. SEL is extremely rare in dogs. To the best of our knowledge, this is the first case report of SEL secondary to hypothyroidism that was treated conservatively. Secondary SEL can be sufficiently managed by treating the underlying cause, if possible.

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon;Lee, Soon-Young;Joo, So-Hyun;Song, Mi-Ryoung;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.16-26
    • /
    • 2007
  • Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.

Abrogation of the Circadian Nuclear Receptor REV-ERBα Exacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration

  • Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Chung, Sooyoung;Choe, Youngshik;Choe, Han Kyoung;Son, Gi Hoon;Rhee, Kunsoo;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.742-752
    • /
    • 2018
  • Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic (DAergic) neurons, particularly in the substantia nigra (SN). Although circadian dysfunction has been suggested as one of the pathophysiological risk factors for PD, the exact molecular link between the circadian clock and PD remains largely unclear. We have recently demonstrated that $REV-ERB{\alpha}$, a circadian nuclear receptor, serves as a key molecular link between the circadian and DAergic systems. It competitively cooperates with NURR1, another nuclear receptor required for the optimal development and function of DA neurons, to control DAergic gene transcription. Considering our previous findings, we hypothesize that $REV-ERB{\alpha}$ may have a role in the onset and/or progression of PD. In the present study, we therefore aimed to elucidate whether genetic abrogation of $REV-ERB{\alpha}$ affects PD-related phenotypes in a mouse model of PD produced by a unilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. $REV-ERB{\alpha}$ deficiency significantly exacerbated 6-OHDA-induced motor deficits as well as DAergic neuronal loss in the vertebral midbrain including the SN and the ventral tegmental area. The exacerbated DAergic degeneration likely involves neuroinflammation-mediated neurotoxicity. The $REV-erb{\alpha}$ knockout mice showed prolonged microglial activation in the SN along with the over-production of interleukin $1{\beta}$, a pro-inflammatory cytokine, in response to 6-OHDA. In conclusion, the present study demonstrates for the first time that genetic abrogation of $REV-ERB{\alpha}$ can increase vulnerability of DAergic neurons to neurotoxic insults, such as 6-OHDA, thereby implying that its normal function may be beneficial for maintaining DAergic neuron populations during PD progression.

Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson's Disease Model

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Ahn, Eun Hee;Jo, Hyo Sang;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.226-233
    • /
    • 2014
  • Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium ($MPP^+$) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by $MPP^+$ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.

Clinical Observation on a Case of Patient with Amyotrophic Lateral Sclerosis (근위축성 측삭 경화증 환자 치험 1례)

  • Choi, Eun-Hee;Jeon, Ju-Hyun;Kim, Yeon-Mi;Lee, Jae-Min;Go, Seung-Kyoung;Kang, Min-Wan;Kim, Sung-Lae;Yang, Gi-Young;Kim, Young-Il;Lee, Hyun
    • Journal of Acupuncture Research
    • /
    • v.24 no.4
    • /
    • pp.225-235
    • /
    • 2007
  • Amyotrophic Lateral Sclerosis(ALS) is Motor Neuron Disease(MND) that reveals muscle relaxation, bulbar palsy, extremities weakness, Pneumonia, in severe case, leads to death. Objectives : Amyotrophic Lateral Sclerosis is one of the incurable disease. In Oriental medicine, Wei symptom is similar as Amyotrophic Lateral Sclerosis, so we diagnosed it as Wei symptom and treated in Oriental medical system. Methods : The patient was treated by acupunture, moxibustion, herb medication, physical treatment. The improvement of the patient was judged by Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS), Grasping power on right arm, circumference of thigh and calf. Result : The patient had better condition for a while but the sputum irritated breathing and the day before he discharged vital sign was not stable and could not breath well. Conclusion : It is necessary to have more examination about the incurable syndromes such as Amyotrophic Lateral Sclerosis, and keep the patient's life better and expand their lives.

  • PDF

Neuroprotective Effects of Modified Yuldahanso-tang (MYH) in a Parkinson's Disease Mouse Model (MPTP로 유도된 Parkinson's disease 동물 모델에서 열다한소탕 가감방 (MYH)의 신경 세포 보호 효과)

  • Go, Ga-Yeon;Kim, Yoon-Ha;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.27 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • Objectives To evaluate the neuroprotective effects of modified Yuldahanso-tang (MYH) in a Parkinson's disease mouse model. Methods 1) Four groups (each of 8 rats per group) were used in this study. 2) The neuroprotective effect of MYH was examined in a Parkinson's disease mouse model. C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days. 3) The brains of 2 mice per group were removed and frozen at $-20^{\circ}C$, and the striatum-substantia nigra part was seperated. The protein volume was measured by Bradford method following Bio-Rad protein analyzing kit. Using mouse/Rat Dopamine ELISA Assay Kit. 4) The brains of 2 mice per group were separated and removed. TH-immunohistochemical was examined in the MPTP-induced Parkinson's disease mice to evaluate the neuroprotective effects of MYH on ST and SNpc. 5) Two mice out of each group were anesthetized and skulls were opened from occipital to frontal direction to take out the brains. The brains added TTC solution for 20 minutes for staining. 6) The water tank used for morris water maze test was filled with $28^{\circ}C$ water, and a round platform of 10cm in diameter was installed for mice to step on. The study was carried out once a day within 30 seconds, keep exercising to step on the platform in the pool. 7) The brains of two mice out of each group were fixed in 10% formaldehyde solution and paraphillin substance was infiltrated. They were fragmented by microtome, and observed under an optical microscope after Hematoxylin & Eosin staining. 8) A round acrylic cylinder with its upper side open was filled with clean water and depressive mouse models were forced to swim for 15 minutes. After 24 hours the animals were put in the same equipment for 5 minutes and were forced to swim. 9) The convenient, simple, and accurate high-performance liquid chromatography (HPLC) method was established for simultaneous determination of Neurotransmitters in MPTP-MYH group. Results 1) MYH possess Dopamine cell protective effect on MPTP-induced injury in striatum and substantia nigra pars compacta. 2) MYH inhibits the loss of tyrosine hydroxylase-immunoreacitive (TH-IR) cells in the striatum and substantia nigra pars compacta on MPTP-induced injury in C57BL/6 mice. 3) MYH possesses improvement effect on MPTP-induced memory deterioration in C57BL/6 mice through the reduction of prolongated Sort of lost time by MPTP injection using the Morris water maze test. 4) MYH possesses hippocampal neuron protective effect on MPTP-induced injury in C57BL/6 mice. 5) MYH possesses improvement effect on MPTP-induced motor behaviour deficits and depression in C57BL/6 mice through the reduction of prolongated losing motion by MPTP injection using the Forced swimming test. 6) MYH increases serotonin product amount on MPTP-induced injury in C57BL/6 mice. Conclusions This experiment suggests that the neuroprotective effect of MYH is mediated by the increase in Dopamin, TH-ir cell, Hippocampus and Serotonin. Furthermore, MYH essential oil may serve as a potential preventive or therapeutic agent regarding Parkinson's disease.

The Study of Correlation Between the Balance, Cognition and Activity of Daily Living in Stroke Patients (뇌졸중 환자의 균형, 인지, 일상생활 평가의 상관성 연구)

  • Kang, Bo-Ra;Jeong, Eun-Song;Kim, Jae-Hee;Ha, Yoo-Na
    • Journal of Korean Society of Neurocognitive Rehabilitation
    • /
    • v.10 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • The purpose of the present study was to determine correlations between the Berg Balance Scale (BBS), Montreal Cognitive Assessment-Korean (MoCA-K) and Modified Barthel Index (MBI) targeting stroke patients, and it seeks to analyze the influence among each factor to establish the fundamental research in evaluating the functional performance capability of stroke patients. The study was conducted between December 2017 and March 2018 and the target of the study was 34 stroke patients who are hospitalized and treated in Y rehabilitation hospital located in Goyang city. Following in criteria of how participants were selected. First, a person without the onset of 6months or more. Second, a person who can communicate and score over 20 points on MMSE-K. Third, a person without unilateral neglect. Fourth, a person without lower motor neuron lesion and orthopedic disease on the bilateral lower extremity. Fifth, a person without audiovisual problem and history of using drug or surgery that influence athletic function. sixth, patients who agreed on participating in the study. The evaluation was processed by measuring BBS, MoCA-K, and MBI with the occupational therapist and physical therapist. Also, one assistant was participated in measuring balanced ability for the safety reason. It was found that significantly correlates (p<.01) with BBS and MoCA-K (r=.459), BBS and MBI (r=.550), MoCA-K and MBI (r=.565). This study is meaningful that it provided the basis for the active use of BBS, MoCA-K and MBI as a clinical evaluation tool and its usefulness.

Effects of Treadmill Exercise on Alpha-synuclein Mutation and Activated Neurotrophins in Nigrostriatal Region of MPTP-induced Parkinson Models (MPTP 파킨슨 모델의 트레드밀 운동이 알파시누크린 변성과 흑질선조체내 신경성장인자 활성화에 미치는 영향)

  • Park, Jae-Sung;Kim, Jeong-Hwan;Yoon, Sung-Jin
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.2
    • /
    • pp.73-88
    • /
    • 2009
  • Objectives : Neuronal changes that result from treadmill exercise for patients with Parkinson's disease(PD) have not been well documented, although some clinical and laboratory reports suggest that regular exercise may produce a neuroprotective effect and restore dopaminergic and motor functions. However, it is not clear if the improvements are due to neuronal alterations within the affected nigrostriatal region or result from a more general effect of exercise on affect areas and motivation. In this study, we demonstrate that motorized treadmill exercise improves the neuronal outcomes in rodent models of PD. Methods : We used a chronic mouse model of parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses(Every 12 hour) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (30 mg/kg) and probenecid (20 mg/kg) over 5 days. These mice were able to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, $0^{\circ}$ of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we extracted the brain and compared their neuronal and neurochemical changes with the control(saline and sedentary) mice groups. Synphilin protein is the substance that manifestly reacts with ${\alpha}$-synuclein. In this study, we used Synphilin as a manifest sign of recovery from neurodegeneration. We analyze the brain stems of the substantia nigra and striatum region using the western blotting technique. Results : There were no expression of synphilin in the saline-induced groups. The addition of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) greatly accelerated synphilin expression which meant an aggregation of ${\alpha}$-synuclein. But, the MPTP-induced treadmill exercise group showed significantly lower expression than the MPTP-induced sedentary group. This means treadmill exercise has a definite effect on the decrease of ${\alpha}$-synuclein aggregation. Conclusions : In this study, our results suggest that treadmill exercise promoted the removal of the aggregation of ${\alpha}$-synuclein, resulting in protection against disease development and blocks the apoptotic process in the chronic parkinsonian mice brain with severe neurodegeneration.

Diagnostic classification and clinical aspects of floppy infants in the neonatal and pediatric intensive care units (신생아 및 소아 중환자실에 입원한 늘어지는 영아(floppy infant)의 진단적 분류 및 임상적 고찰)

  • Kim, Eun Sun;Jung, Kyung Eun;Kim, Sang Duk;Kim, Eo Kyung;Chae, Jong Hee;Kim, Han Suk;Park, June Dong;Kim, Ki Joong;Kim, Beyong Il;Hwang, Yong Seung;Choi Jung-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.11
    • /
    • pp.1158-1166
    • /
    • 2006
  • Purpose : The purpose of this study is to make a diagnostic classification and discuss a diagnostic strategy of floppy infants by investigating clinical, neurological, electrophysiological, and genetic analysis of infants admitted to intensive care units with the complaint of hypotonia. Methods : A retrospective study was performed from Jan. 1993 to Dec. 2005 in neonatal and pediatric intensive care units of Seoul National University Children's Hospital. Clinical features and all tests related to hypotonia were investigated. Results : There were 21 cases of floppy infants admitted to intensive care units. Final diagnosis was classified as centra (7 cases[33.3 percent]), peripheral (11 cases [52.4 percent]), and unspecified (3 cases [14.3 percent]). Among the central group, three patients were diagnosed as hypoxic ischemic encephalopathy, two patients as Prader-Willi syndrome, one patient as chromosomal disorder, and one patient as transient hypotonia. Among the peripheral group, four patients were diagnosed as myotubular myopathy, three patients as SMA type 1, two patients as congenital myotonic dystrophy, one patient as congenital muscular dystrophy, and one as unspecified motor-neuron disease. Motor power was above grade 3 on average, and deep tendon reflex was brisk in the central group. Among investigations, electromyography showed 66 percent sensitivity in the peripheral group, and muscle biopsy was all diagnostic in the peripheral group. Brain image was diagnostic in the central group, and Prader-Willi FISH or karyotyping was helpful in diagnosis in central group. Morbidity and mortality was more severe in the peripheral group Conclusion : Classification of diagnosis by clinical characteristics in this study, and application of investigations step by step, may provide an effective diagnostic strategy.