• 제목/요약/키워드: Motor fault diagnosis

검색결과 219건 처리시간 0.022초

페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발 (Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system)

  • 김성호;이성룡;강정규
    • 제어로봇시스템학회논문지
    • /
    • 제7권6호
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.

LPC와 DTW 기법을 이용한 유도전동기의 고장검출 및 진단 (Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods)

  • 황철희;김용민;김철홍;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.141-147
    • /
    • 2011
  • 본 논문은 유도전동기의 고장검출 및 진단을 위한 효율적인 2-단계 고장예측 알고리즘을 제안한다. 첫 번째 단계에서는 고장 패턴 추출을 위해 선형 예측 부호화 (Linear Predictive Coding: LPC) 기법을 사용하고, 두 번째 단계에서는 고장 패턴 매칭을 위해 동적시간교정법 (Dynamic Time Warping: DTW)을 사용한다. 유도전동기에서 정상 및 각종 이상 상태의 조건을 발생시켜 추출한 샘플링 주파수 8kHz, 샘플링 시간 2.2초의 정상상태 및 비정상 상태의 진동데이터 8개를 사용하여 모의 실험한 결과, 제안한 고장예측 알고리즘은 기존의 고장진단 알고리즘보다 약 45%의 정확도 향상을 보였다. 또한 TI사의 TMS320F2812 DSP를 내장한 테스트베드 시스템을 제작하여 제안한 고장예측 알고리즘을 구현하고 검증하였다.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Park's Vector Approach의 위상각 변이를 활용한 유도전동기 고정자 고장진단 (A Stator Fault Diagnosis of an Induction Motor based on the Phase Angle of Park's Vector Approach)

  • 고영진;이범;송명헌;김경민
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.408-413
    • /
    • 2014
  • In this paper, we propose a fault diagnosis method based on Park's Vector Approach using the Euler's theorem. If we interpreted it as Euler's theorem, it is possible to easily find the phase angle difference between the healthy condition and the fault condition. And, we analyzed the variation of the phase angle and performed the diagnostic method of the induction motor using feature vectors that were obtained by using a Fourier transform. The analysis of time and speed variation of the motor was performed and, as a result, we could find more soft variations than rough variations. In particular, the analysis of the distortion through each phase shows that two-turn and four-turn shorted motors are linearly separable. In this experiment, we know that the maximum breakdown threshold value for determining steady-state fault detection is 49.0788. Simulation and experimental results show the more detectable than conventional method.

임베디드 타입의 실시간 BLDC 전동기 고장진단 시스템 구현 (Imbedded Type Real-Time Fault Diagnosis for BLDC Motors)

  • 박진일;김용민;이대종;조재훈;전명근
    • 조명전기설비학회논문지
    • /
    • 제23권4호
    • /
    • pp.62-71
    • /
    • 2009
  • 본 논문에서는 주성분 분석 기법에 의한 BLDC 전동기의 고장진단 알고리즘과 임베디드 타입의 실시간 고장진단 시스템을 구현하였다. 우선 오프라인 상태에서 제안된 고장진단 알고리즘을 검증하기 위해 BLDC 고장진단 실험장치를 구현한 후 LabVIEW 프로그램에 의해 다양한 고장 데이터를 취득하였다. 취득된 데이터는 신호특성에 맞는 전 처리과정을 수행한 후 주성분분석 기법에 의해 고장특성을 나타내는 특징을 추출하고 최종적으로 BLDC 전동기의 진단은 유클리디안 거리 유사도 방법에 의해 수행된다. 이러한 결과를 바탕으로 임베디드 타입의 실시간 BLDC 고장진단 시스템을 구현하였다. 제안된 방법은 다양한 실험을 통하여 성능을 평가하였다.

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

Analysis of Fault Diagnosis for Current and Vibration Signals in Pumps and Motors using a Reconstructed Phase Portrait

  • Jung, Young-Ok;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.166-171
    • /
    • 2015
  • In this paper, we measure the current and vibration signals of one-dimensional time series that occur in a motor and pump, respectively. These machines are representative rotary and pumping machines. We also eliminate unnecessary components such as noise by pre-processing the current and vibration signals. Then, in order to diagnose fault signals for the pump and motor, we transform from one-dimensional time series to a two-dimensional phase portrait using Takens’ embedding method. After this transformation, we review the variation in the pattern according to the fault signals.

LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발 (The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW)

  • 송명현;박규남;한동기;이태훈;우혁재
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.

진동신호를 이용한 전기동차 구동장치의 안전성 평가 (Safety Diagnosis of Electric Train Driving System Using Vibration Signal)

  • 이봉현;최연선
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.929-935
    • /
    • 1998
  • Safety diagnosis of electric train driving system is performed using vibration signals of running electric train. Safety diagnosis is tried on the viewpoints of the appreciation of superannuation and the fault diagnosis of motor, reduction gear and bogie. The appreciation of superannuation is checked by the vibration levels of driving parts and the fault diagnosis is done by analyzing the frequencies of the vibration signals which are measured directly from a running electric train. The results shows that the vibration levels of each parts increase as the train gets older and each parts have their own frequency patterns of the vibration. Vibration propagation path is also investigated using calculated the coherence value between bogie and driving system. As the results, it is known that vibration signal can be utilized successfully for the safety diagnosis of the driving part of electric train.

  • PDF