• Title/Summary/Keyword: Motor drive inverter

Search Result 538, Processing Time 0.032 seconds

Angle Control for SRCI Fed Induction Motor Drive (SRCI 구동 유도전동기 시스템의 Angle Control)

  • 김인동;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.854-861
    • /
    • 1988
  • The current source inverter-fed induction motor(CSIM) drive is widely used in industry because of its four quadrant operation, fuseless protection, fuseless protection, and ruggedness. the CSIM drive system, however, has shortcomins such as slow response and dynamic stability to load torque disturbance and reference speed change. Such a disadvantages can be compensated considerably by means of introducing additional angle angle control loop. The angle control method is dependent upon the inverter type. In this paper, simultaneus recovery and commutation inverter(SRCI) which is developed recently is considered.

  • PDF

PID Controller Tuning using Co-Efficient Diagram method for Indirect Vector Controlled Drive

  • Durgasukumar, G.;Rama Subba Redddy, T.;Pakkiraiah, B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1821-1834
    • /
    • 2017
  • Medium voltage control applications due to obtain better output voltage and reduced electro-magnetic interference multi level inverter is used. In closed loop control with inverter, the PI controller does not operate satisfactorily when the operating point changes. This paper presents the performance of Co-Efficient diagram PI controller based indirect vector controlled induction motor drive fed from three-level inverter under different operating conditions (dynamic and steady state). The proposed Co-Efficient diagram PI controller based three level inverter significantly reduces the torque ripple compared to that of conventional PI controller. The performance of the indirect vector controlled induction motor drive has been simulated at different operating conditions. For three-level inverter control, a simplified space vector modulation technique is implemented, which reduces the coordinate transformations complications in the algorithms. The performance parameters, torque ripple contents and THD of induction motor drive with three-level inverter is compared under different operating conditions using CDM-PI and conventional PI controllers.

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

A Study on Performance of Curent Regulations for IGBT Inverter-Fed Induction Motor Drive Systems (IGBT 인버터-유도전동기 구동시스템을 위한 전류제어기의 특성 연구)

  • 이동춘;김영렬;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.215-225
    • /
    • 1994
  • In this paper, a performance evaluation of different current regulators for induction motor drive systems fed by IGBT inverter is presented. The twoparts of current regulation are considered : current error compensation part, voltage modulation part. The characteristics of hysteresis, synchronous PI, decoupled PI, predictive, deadbeat and stage feedback controllers are analyzed and the steady-state performances and transient responses of current regulation are well compared through the simulation and experimental results.

  • PDF

A Study on Prediction of Conducted EMI In PWM inverter fed Induction Motor Drive System (PWM 인버터-유도전동기 구동시스템의 전도노이즈 예측에 관한 연구)

  • 이진환;안정준;원충연;김영석;최세완
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.367-372
    • /
    • 1999
  • In this paper, an inverter fed induction motor drive system is analyed in order to predict the conducted interference. High frequency model for inverter, motor and system parasitic components are proposed. High frequency component allows time and frequency domain analysis to be performed with standard PSpice tool. The overall high frequency component and model are verified by comparing simulation and experimental result.

  • PDF

Operation Characteristics Investigation of the Next Generation High Speed Railway System with respect to IPMSM Parameter Variation (IPMSM 파라미터 변동에 따른 차세대 고속전철 시스템의 운전 특성 고찰)

  • Park, Dong-Kyu;Suh, Yong-Hun;Lee, Sang-Hyun;Jin, Kang-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3133-3141
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor drive system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effect of IPMSM parameter variations to the system operation characteristics of the multi inverter drive high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of IPMSM using the 1C1M control simulator based on Matlab/Simulink.

  • PDF

Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor (교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.

Development of electric Four Wheel Drive System (e-4WD 시스템 개발)

  • Jo, Hee Young
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • e-4WD(Electric-4WD) system is a 4WD(4-Wheel Drive) System that can transform a car into a Hybrid System. e-4WD consists of a Motor, Inverter, Speed reducer and Clutch. The Motor, Speed reducer and Clutch are installed on the rear sub-frame as a chassis module type. The inverter is installed separately. Compared to a mechanical 4WD, the e-4WD system has many advantages. For example, the reduced number of drivetrain components makes better use of the space. Driving with a motor only at low speed improves fuel economy and reduces exhaust gas. Engine downsizing is available because the motor assists the engine. The performance of a conventional HEV(Hybrid Electric Vehicle) system can also be maintained. This paper proposes the specifications of components and the control logic for an e-4WD System. And the effect of the e-4WD system is proven using a test vehicle equipped with components under various test conditions.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

Failure Case-Study and Countermeasures of High-Voltage Motor with Inverter Drive System (인버터 구동에 따른 고압전동기 사고사례와 대책)

  • Choi Young-Chan;Woo Myung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.163-166
    • /
    • 2002
  • Recently, the insulation breakdown accident has been experienced at 6.6kV inverter driving motor. That brought about the reliability degradation of motor driving system.. We need to find the solution with system engineering level. The objectives of this study are developing the appropriate filter for the drive to protect the motor and the Insulation system of motor which Is driven by inverter. We clarify the cause of the deterioration of the inverter driving motor through the analysis of Insulation breakdown accidents.

  • PDF