• Title/Summary/Keyword: Motor drive inverter

Search Result 538, Processing Time 0.03 seconds

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

EMI Analysis of Soft Switching Inverter on High Power AC Motor Drive (대전력 교류전동기 구동용 소프트 스위칭 인버터의 EMI 해석)

  • 권순걸
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.76-81
    • /
    • 2002
  • In high power motor drive system, the hard-switching topology produces severs switching losses and EMI noises. Also the inverter switching frequency is thus limited because of excessive loss and thermal handling problem. The primary purpose of the proposed works on the induction motor drive system is to develop an advanced soft-switching inverter topology that is most suitable for high power induction motor drive applications. To make the optimal selection EMI comparison of the switching losses presented. To verify the proposed design procedure, detailed simulation analysis with theoretical and experimental approaches have been done using laboratory prototype.

  • PDF

Output filter design for conducted EMI reduction of PWM Inverter-fed Induction Motor System

  • Kim Lee-Hun;Won Chung-Yuen;Kim Young-Seok;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.761-767
    • /
    • 2001
  • In this paper, filtering techniques to reduce the adverse effects of motor leads on high-frequency PWM inverter fed AC motor drives will be examined. The filter was designed to keep the motor terminal from the cable surge impedance to reduce overvoltage reflections, ringing, and the dv/dt, di/dt. Therefore, filtering techniques are investigated to reduce the motor terminal overvoltage, ringing, and EMI noise in inverter fed ac motor drive systems. The output filter is used to limit the rate of the inverter output voltage and reduce EMI(common mode noise) to the motor. The performance of the output filter is evaluated through simulations (PSIM) and experiment on PWM inverter-fed ac motor drive(3phase, 3hp(2.2kw), input voltage 220/380V, induction motor). An experimental PWM drive system reduction of conducted EMI was implemented on an available TMS320C31 microprocessor control board. Finally, experimental results showed that the inverter output filter reduces more CM noise than the LPF(low pass filter) and reduce overvoltage and ringing at the motor terminal.

  • PDF

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

Output Filter Design for Conducted EMI Reduction of PWM Inverter-Fed AC Motor Drive System (PWM 인버터 시스템에서의 전도노이즈 저감을 위한 출력필터 설계에 관한 연구)

  • 김이훈;박규현;원충연;김영석;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.546-555
    • /
    • 2001
  • In this paper filtering techniques to reduce the adverse effects of motor leads on high-frequency PWM inverter fed AC motor drives are presented. The filter was designed to keep the motor terminal from the cable surge impedance to reduce overvoltage reflections ringing and the dv/dt, di/dt, at the motor terminals. Specially the output filter is used to limit the rate of the inverter output voltage and reduce common mode noise to the motor, The performance of the output filter is evaluated through simulations and experiment on PWM inverter-fed AC motor drive. An experimental PWM drive system reduction of conducted EMI was implemented on an available TMS320C31 microprocessor control board Finally, experimental result shows inverter output filter reduces more common mode voltage than low pass filter also reduce overoltage and ringing at the motor terminal.

  • PDF

Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System (단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법)

  • Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

A Study on the PWM Strategy and Gear Changing Techniques of an Inverter for Variable Speed Drives on Traction Motors (견인전동기 가변속 운전을 위한 인버터의 PWM 방법 및 패턴 절환기법에 관한 연구)

  • Seo, Yeong-Min;Park, Yeong-Jin;Hong, Sun-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.646-654
    • /
    • 1999
  • This paper deals with PWM patterns for harmonic reduction in inverter fed traction motors and the gear changing techniques for the variable speed drive of traction motor. GTOs are used as switching device of inverter because traction motor is a large load. To derive PWM rattern which can minimize the harmonics with the limited switching frequency, the output current and torque characteristic of SPWM and SHE PWM was analyzed. GTO inverter used for traction motor drive includes harmonics in the output current and torque by the limitation of switching frequency. However, the hybrid PWM method that adopt SPWM in the range of low frequency and SHE PWM in upper frequency range can achieve less harmonic characteristics in GTO inverters. If the traction motor is driven in variable speed by the proposed PWM pattern, 7 times of gear changing is needed. At the instant of the mode change, magnetic flux and torque may be altered and the large current flow. To reduce such an undesirable transient behavior, it is also presented the technique for the gear changing of inverter fed traction motor drive operated with the hybrid PWM. The results are verified by simulations and experiments.

  • PDF

Soft Switching Inverter with An Auxiliary Active Quasi-Resonant DC Link Snubber for AC Servo Motor Drive

  • Mun, Sang-Pil;Kim, Chil-Ryong;Lee, Jong-Kurl;Park, Man-Kyu;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.79-87
    • /
    • 2008
  • This paper presents a simple circuit topology of the auxiliary active quasi-resonant DC link snubber-assisted three phase voltage source soft-switching inverter for small scale PM motor drive applications. The pulse processing drive circuit interface and its soft-switching operation are discussed from an experimental point of view. Moreover, its conductive noise is measured and evaluated for electrical AC servo motor drive as compared with that of the conventional hard switching inverter.

Advanced 1200V High Side Driver for Inverter Motor Drive System (인버터 모터 드라이브 시스템을 위한 새로운 1200V High Side Driver)

  • Song, Kinam;Oh, Wonhi;Choi, Jinkyu;Lee, Eunyeong
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.487-488
    • /
    • 2015
  • New inverter motor drive systems consume 30%~50% less energy compared to existing motor drive systems. For inverter motor drive systems, the development of a 1200V high side driver is critical. This paper presents an advanced 1200V high side driver with low power consumption and high ruggedness. This solution implements a high voltage level shifter which consumes low power by adding a clamped VGS LDMOS driver to the conventional short pulse generator. Moreover, this paper proposes a highly rugged 1200V LDMOS which improves SOA by limiting the hole current. This paper could be applied to smart power modules used for HVAC (heating, ventilation, and airconditioning) and industrial inverters. Consequently, this paper will provide design engineers with an understanding of how they can make a significant contribution to worldwide energy savings.

  • PDF

Five-level Inverter for Excitation Control of SRM Drive

  • Oh, Seok-Gyu;Park, Sung-Jun;Ahn, Jin-Woo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.64-69
    • /
    • 2001
  • Energy recovery in the regenerative region is very important when SRM is used in traction drive, This is to reduce en-ergy loss during mechanical braking and/or to have a high efficiency drive during braking To control excitation voltage in motor operation and regenerative voltage in the generator operation in the SRM multi-level voltage control is effective The paper sug-gests multi-level inverter which is useful for motoring and regenerative operation in SRM