• Title/Summary/Keyword: Motor current

Search Result 3,084, Processing Time 0.033 seconds

Treatment of glabellar frown lines using selective nerve block with radiofrequency ablation (고주파절제술을 통한 선택적 신경차단법을 이용한 미간주름의 개선)

  • Hwang, Yong Seok;Kim, Young Seok;Roh, Tai Suk;Tark, Kwan Chul;Lee, Kun Chang
    • Archives of Plastic Surgery
    • /
    • v.36 no.2
    • /
    • pp.205-210
    • /
    • 2009
  • Purpose: Corrugator supercilii muscle pulls eyebrow to inferomedial direction and produces the vertical component of the glabellar line formation. Current techniques for eliminating of glabellar frown include direct resection of corrugators and botulinum toxin injection. Muscle resection in endoscopic face lift procedure is relatively complex and has many disadvantages ranging from possible nerve injury, postoperative edema, pain and a long recovery period. The Botox treatment on the other hand is much more simple in technique but has a short duration of action. The authors have attempted new ways of finding improved treatment of the glabellar frown by selectively blocking of motor nerves innervating the corrugator supercili muscle by using radiofrequency ablation technique. Methods: A total of 80 patients were recruited in our study during the period between Feb. 2007 to June 2008. A probe was introduced from the supraorbital ridge and advanced to the corrugator supercilii muscle. Nerve stimulator was then used to locate the nerve innervating the corrugator and radiofrequency ablation of the nerve was done. Results: In all patients, there were marked improvement in glabellar frown after treatment. There were no reported cases of any relapses during the follow up period. No complication was noted such as facial nerve injury. No patient complained of any adverse symptoms other than slight discomfort due to swelling of the operation site. Conclusion: The treatment of glabellar frown lines using selective nerve block with radiofrequency ablation was not only less invasive but also excellent in surgical outcomes.

The Scutellaria Flavone, Oroxylin A, Improves Attention-Deficit/Hyperactivity Disorder Related Behaviors in Spontaneously Hypertensive Rats

  • Yoon, Seo-Young;Chun, Mi-Sook;Lee, Yong-Soo;Park, Hae-Il;Shin, Chan-Young;Ryu, Jong-Hoon;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.343-350
    • /
    • 2008
  • Oroxylin A is a flavonoid isolated from Scutellaria baicalensis, which is one of the most important medicinal herbs in traditional Korean medicine. In this study, we investigated the psychopharmacological activities of oroxylin A using the open field, rota-rod, balanced wire and plus-maze tests in Spontaneously Hypertensive Rats (SHR) and Wistar Kyoto Rats (WKY). Oroxylin A reduced hyperactivity in SHR (ADHD animal model) although it tended to increase locomotor activity in WKY. Methylphenidate did not reduce hyperactivity. Oroxylin A alleviated impulsive behaviors such as rearing, the percentage of moving time to the central area and the tendency to move into an unstable condition (open area in elevated plus-maze). Methylphenidate also reduced the percentage of staying time in the central area and the tendency to move into an unstable condition. Both oroxylin A and methylphenidate enhanced motor attention in SHR and WKY. Oroxylin A antagonized the muscimol ($GABA_A$ receptor agonist)-induced $Cl^-$current and its action was similar to that of bicuculline ($GABA_A$ receptor antagonist). The effects of oroxylin A may be caused by the antagonism at the $GABA_A$ receptor. Thus, oroxylin A may be a candidate of drug for treatment of ADHD.

Auto Tuning of Position Controller for Proportional Flow Control Solenoid Valve (비례유량제어밸브 위치제어기 자동조정)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.797-803
    • /
    • 2012
  • Proportional solenoid valves are a modulating type that can control the displacement of valves continuously by means of electromagnetic forces proportional to the solenoid coil current. Because the solenoid-type modulating valves have the advantages of fast response and compact design over air-operated or motor-operated valves, they have been gaining acceptance in chemical and power plants to control the flow of fluids such as water, steam, and gas. This paper deals with the auto tuning of the position controller that can provide the proportional and integral gain automatically based on the dynamic system identification. The process characteristics of the solenoid valve are estimated with critical gain and critical period at a stability limit based on implemented relay feedback, and the controller parameters are determined by the classical Ziegler-Nichols design method. The auto-tuning algorithm was verified with experiments, and the effects of the operating point at which the relay control is activated as well as the relay amplitude were investigated.

Fuel Economy Improvement Cruise Control Algorithm using Distance and Altitude Data of GPS in Expressway (고속도로에서 GPS 거리와 고도데이터를 이용한 연비 향상 정속 순항 제어 알고리즘)

  • Choi, Seong-Cheol;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • A vehicle fuel economy is very important issue in view of fuel cost and environmental regulation. It has been improved according to the performance improvement of the vehicle engine, power train and many components. It was evaluated at given mode (LA-4, FTP-75, etc) on an engine dynamometer or computer simulation program. In this paper, the fuel economy improvement cruise control algorithms as controling a vehicle velocity by road load calculated and predicted in a real expressway with gradient was studied. Firstly, the altitude and distance data which was measured with GPS sensor was already installed in the ECU of a vehicle. Then the vehicle equipped with GPS receiver is driven the same expressway. The ECU calculates the gradient angle and the in-/decreasing velocity using the gradient angle by comparing the current received distance and altitude data from GPS with the saved data ahead of the vehicle. Therefore the ECU can calculate and predict the vehicle velocity considering tolerance velocity of next position with running. Then the ECU controls the vehicle velocity to meet this predicted velocity in all section. Three cruise control algorithms with the different velocity profiles for the improvement of fuel economy are proposed and compared with the computer simulation results that the vehicle runs on Youngdong expressway. The proposed CVELCONT2 and CVELCONT3 algorithms were improved 3.7% and 4.8% of fuel economy compared with CONSTVEL which is steady cruising algorithm. These two algorithms are recommended as the Eco-cruise drive methodologies in this paper.

Study on Influence of Rotor Temperature Variation on the Performance of Maximum Torque Per Amp Control Strategy (단위 전류당 최대 토크 제어기 성능에 미치는 로터 온도 변화의 영향에 대한 연구)

  • Kwon, Chun-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3110-3114
    • /
    • 2009
  • Rotor temperature variation is a significant issue in the design of induction motor controls. In the literature, numerous studies have mentioned significant performance degradation due to rotor temperature variation unless it is taken into account. However, those studies have mainly focused on field-oriented control in terms of tracking performance. There was little research about the influence of rotor temperature variation on performance particularly in the case of optimal controls such as maximum torque per amp (MTPA) control strategy. This work investigates how to affect the performance of maximum torque per amp (MTPA) control strategy as rotor temperature varies in time. To this end, investigation was carried out in two ways to see whether the objective of MTPA control strategy is achieved regardless of rotor temperature variation. It is to produce a desired torque with the minimum possible stator current at the same time. Laboratory experiment shows that tracking performance and maximum torque per amp condition is significantly affected by rotor temperature variation as rotor temperature varies, thus ending up with performance degradation of MTPA control.

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

Development of the Driving Pump for the Super-cavitation & High-speed Cavitation Tunnel (초공동 고속 캐비테이션 터널 구동펌프 개발)

  • Ahn, Jong-Woo;Kim, Gun-Do;Paik, Bu-Geun;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.153-160
    • /
    • 2018
  • In order to develop the driving pump for High-speed Cavitation Tunnel(HCT) which can experiment the super-cavitating submerged body, KRISO decided on the pump specification, designed the mixed-flow pump on the basis of the existing pump data and predicted the performance of the design pump using commercial CFD code (CFX-10). After the manufacture and installation of the driving pump, KRISO conducted the trial-test for HCT, analyzed the pump performance and compared trial-test results to those of design stage. The trial-test items for the HCT driving pump are measurements of output current/voltage at the inverter of the driving pump and the flow velocity in the HCT test section. The trial-test results showed the decrease in the flow rate of about 4.6% and the increase in pump head of about 8%, compared with those of the pump prediction. After the trial-test, the performance of the driving pump is predicted using CFX-10 with measured flowrates and pump rotational velocities. Though there is some difference between trial-test and prediction results due to inadequate motor data, it is thought that the tendency is reasonable. It is found that CFX-10 is useful to predict a mixed-flow pump.

Interventional Pain Management in Rheumatological Diseases - A Three Years Physiatric Experience in a Tertiary Medical College Hospital in Bangladesh

  • Siddiq, Md. Abu Bakar;Hasan, Suzon Al;Das, Gautam;Khan, Amin Uddin A.
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.205-215
    • /
    • 2011
  • Background: Interventional pain management (IPM) is a branch of medical science that deals with management of painful medical conditions using specially equipped X-ray machines and anatomical landmarks. Interventional physiatry is a branch of physical medicine and rehabilitation that treats painful conditions through intervention in peripheral joints, the spine, and soft tissues. Methods: A cross-sectional study was conducted using three years of hospital records (2006 to 2008) from the Physical Medicine and Rehabilitation Department at Chittagong Medical College Hospital in Bangladesh, with a view toward highlighting current interventional pain practice in a tertiary medical college hospital. Result: The maximum amount of intervention was done in degenerative peripheral joint disorders (600, 46.0%), followed by inflammatory joint diseases (300, 23.0%), soft tissue rheumatism (300, 23.0%), and radicular or referred lower back conditions (100, 8.0%). Of the peripheral joints, the knee was the most common site of intervention. Motor stimulation-guided intralesional injection of methylprednisolone into the piriformis muscle was given in 10 cases of piriformis syndrome refractory to both oral medications and therapeutic exercises. Soft tissue rheumatism of unknown etiology was most common in the form of adhesive capsulitis (90, 64.3%), and is discussed separately. Epidural steroid injection was practiced for various causes of lumbar radiculopathy, with the exception of infective discitis. Conclusion: All procedures were performed using anatomical landmarks, as there were no facilities for the C-arm/diagnostic ultrasound required for accurate and safe intervention. A dedicated IPM setup should be a requirement in all PMR departments, to provide better pain management and to reduce the burden on other specialties.

Terrain Feature Extraction and Classification using Contact Sensor Data (접촉식 센서 데이터를 이용한 지질 특성 추출 및 지질 분류)

  • Park, Byoung-Gon;Kim, Ja-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.171-181
    • /
    • 2012
  • Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.

Development of Vehicle Emission Model with a High Resolution in Time and Space (${\cdot}$공간적 고해상도 자동차 배출량 모형의 개발)

  • Park, Seong-Kyu;Kim, Shin-Do;Park, Ki-Hark
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.293-299
    • /
    • 2004
  • Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristics of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends is towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a model of vehicle emission calculation by using real-time traffic data was studied. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It is possible that characteristics of hourly air pollutants emission rates is obtained from hourly traffic volume and speed. An emission rates model is allocated with a high resolution space by using geographic information system (GIS). Vehicle emission model was developed with a high resolution spatial, gridded and hourly emission rates.