• Title/Summary/Keyword: Motor current

Search Result 3,070, Processing Time 0.024 seconds

Speed control induction motor (속도제어형 유도전동기)

  • 오상세;박창엽
    • 전기의세계
    • /
    • v.17 no.1
    • /
    • pp.6-10
    • /
    • 1968
  • To control of the speed of induction Motor, a variable frequency power supply is needed. But this New type induction Motor Constitute stator and Rotor with New principle, its speed can be easily and widely Controlled by changing phase of the stator, and start at low current than rating without starter. Also, its no load current is same as shart current, and speed increase in proportion to current. On this points this induction Motor for speed control is different from induction Motor using Now.

  • PDF

A Driving Torque Prediction of Brushless DC Motor by Using the Measured Current Data (전류측정 데이터를 이용한 브러쉬 없는 직류전동기의 구동토크 예측)

  • 변영철;전혁수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.242-250
    • /
    • 1999
  • This paper presents an estimation scheme of the external torque applied on the motor by using measured motor input current when the IPM(Interior Permanent Magnet) rotor type BLDC motor operates with constant speed. In general, the BLDC motor is controlled by vector control method. If it could be operated at over critical speed, the control scheme must be modified to flux-weakening control method. The external torque applied on the motor using flux-weakening control method could not be calculated by conventional torque equation because the demagnetizing current Id exists in the motor input current. In this paper, the commonly used flux-weakening control method is studied and the modified torque estimation scheme is suggested. The estimation scheme has been verified by the simulations and experimental results.

  • PDF

A New Three-Phase Current Modulation Method to Suppress the Commutation Torque Ripple of Brushless DC Motor

  • Wang, Zhiqiang;Yin, Shuai;Ma, Tiehua
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1925-1933
    • /
    • 2017
  • The brushless DC motor's commutation torque ripple is caused by inconsistency in the rate of phase current change. Thus, a method that considers armature resistance is proposed to modulate phase current. The three-phase control strategy, which involves the "open-phase conduction, off-phase pulse width modulation, and maintained non-commutation phase" technique, is applied during commutation at full-speed segments of the motor. Changes in each phase current are analyzed theoretically by establishing mathematical model based on phase current to determine the relative difference among shutdown phase, duty, and motor operating parameters. The turn-on and turn-off phase current change rates are made to be consistent to ensure less non-commutation phase current ripple, then the torque ripple is inhibited. The simulation results show that the phase commutation current and torque ripple coefficient of the proposed method are reduced from 56.9% and 55.5% to 6.8% and 6.1%, respectively. In the experiment system, the pulsation coefficient of the motor phase current is reduced from 40.0% to 16.7% at low speed and 50.0% to 18.8% at high speed. The simulation and experimental results show that the proposed control method significantly inhibits commutation current and torque in the full section.

Adaptive Control of Machined Surface Using Current of the Feed Motor at Rest (정지상태 모터의 전류 신호를 이용한 피삭재의 가공면 적응제어)

  • 정영훈;윤승현;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.79-82
    • /
    • 1997
  • The current from the feed motor of a machine tool contains substantial information about the machining state. There have been many researches that investigated the current as a measure for the cutting forces. However it has not been reported that indirect measurement of the cutting forces from the current of the feed motor at rest is possible. The cutting force normal to the machined surface influences the machined surface of the workpiece, which makes it necessary to estimate this force to control the roughness of the machined surface. But the unpredictable behavior of the current prevents applying the current to prediction of the cutting state. In this paper, empirical approach was conducted to resolve the problem. Also parametric adaptive and fuzzy logic control strategies are applied to the force regulation problem. As a result, the current is shown to be related to the accumulation of the infinitesimal rotation of the motor, and besides the unpredictable behavior of the current is shown to be caused by the relationship. Subsequently the relationship between the current and the cutting force is identified, and it is presented that control of machined surface using the current of the feed motor at rest is possible.

  • PDF

Performances of Current-Waveform Modulated Single-Phase Induction Machine (전류파형을 변조한 단상유도전동기구의 특성에 관한 연구)

  • 황영문;김철우;박용규
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 1975
  • A single-phase induction motor with it's stator winding splitted into two series windings, of which the terminals of one winding is switched pulsationally by a thyristor type ON-OFF device so that the motor may operate as a pulsational shaded-pole motor, can modulate current waveforms of it's two series windings. In view of current waveform modulation method, a single-phase single-winding motor operates as a two-phase induction motor with asymmetrical axis windings where the starting torque can be obtained effectively without an auxiliary capacitor attached and it's running speed controlled by shifting phase between current waveforms differently. Equivalent circuit for analysis is modified from a double revolving field equivalent circuit of a single-phase induction motor with asymmetrical windings whose angle is 45.deg.C elet. degrees. Analysis and test results show that ON-OFF action of the pulsational shaded-pole winding has the same effect of a series capacitor, and then at heavy loads this motor operates with a small amonut of the input current than that having the fixed shaded-pole winding.

  • PDF

Current Control of Induction Motor using Neural Networks (신경 회로망을 이용한 유도 전동기의 전류제어)

  • Park, Young-Soo;Seo, Ho-Joon;Kim, Seong-Hwan;Seo, Sam-Jun;Kim, Dong-Slk;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.66-68
    • /
    • 1997
  • In this paper, our interest is the identification and control of nonlinear dynamic plant, induction motor, by using neural networks. We usually use vector control in the induction motor such as in the DC motor. When we go over the inputs of voltage source invertor, we can find that torque current and flux current couple each other in the induction motor. Before putting control inputs in the system, we should remove the coupling terms which we already know from them. But we should consider that cross coupling terms have time-varying variables. In this paper, we identified the parameter of induction motor by using neural networks and designed the controller with identified parameters. Through this procedure we obtained compensated inputs which are decoupled each other. Using induction motor currents control, we can make the d axis current hold constant value and control the q axis current at the same time.

  • PDF

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

Characteristic Analysis of Independent 3 phase BLDC Motor (독립 3상 BLDC 전동기의 특성해석에 관한 연구)

  • Jo, Kwan-Jun;Oh, Jin-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2007
  • This paper describes independent phase BLDC motor with a maximum torque among BLDC motor used for electric propulsion system Independent phase BLDC motor has characteristic that phases of stator we independent electrically. This paper is modeling two type of 3 phases BLDC motors, one has Y-connection type and the other has independent type, and it shows simulation of them, compares its characteristics. As a result of simulation, phase voltage of independent 3 phase BLDC motor is higher than Y-connection three phase BLDC motor. When the stator resistance and inductance are stable, high phase voltage causes an increase in maximum phase current and an increases in it serially causes an increase of maximum torque. It is also found that the current pulsation of independent phase BLDC motor was decreased by controlling phase current of independent BLDC motor.

Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor (단상유도전동기의 돌입전류저감을 위한 제어기 설계)

  • Park, Su-Kang;Baek, Hyung-Lae;Lee, Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.238-245
    • /
    • 2001
  • During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

A Study on Analysis of Inverter-fed Induction Motor's Bearing Current using Improved Equivalent Ciruit Parameters (개선된 등가 파라미터를 이용한 인버터 구동 유도전동기의 축전류 해석에 관한 연구)

  • Kim, Byung-Taek;Koo, Dae-Hyun;Hong, Jung-Pyo;Kwon, Byung-Il;Jun, Ji-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.683-692
    • /
    • 2007
  • An inverter driven induction motor has more superior dynamic characteristic than sine wave driven induction motor. But it has a problem with shaft voltage and bearing current in drive-motor system. This paper presents the analysis of bearing current in inverter-fed induction motor. The proposed method is based on using numerical method (FEM) to derive parasitic parameters in motor. Using the electric field analysis with FEM, the stored energy in dielectric materials of the motor can be calculated and the parasitic capacitances are obtained. Then we compared the proposed method with a conventional method in variable frequency and load conditions. From the comparision of simulation and experiment result, we confirmed that the proposed method is valid.