• Title/Summary/Keyword: Motor current

Search Result 3,084, Processing Time 0.027 seconds

A Study on the Current-diagram Method for Calculating Induction Motor Characteristics with Adjustable Frequency (가변주파수에 있어서 유도전동기의 특성도식 산정법에 관해서 제1보)

  • Min-Ho Park
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.29-38
    • /
    • 1968
  • The development of the frequency converter using semiconductor enables to easily control the speed of A.C. motors. It is now technically possible and economically feasible to provide them with power at variable frequency, using silicon-controlled-rectifier (or thyristor) inverters. In such a case, if an induction motor is to be operated efficiently over a wide speed range, it must be supplied from a variable-frequency source whose frequency is adjustable over a range similar to that required for the motor speed. It is desired to observe how several characteristics are changed such as primary current, torque-speed, etc. Although the characteristics could be obtained by means of the conventional method, it requires very complicated calculation. It is assumed that the charateristics above are easily investigated by means of current diagram method from variable circuit constants relating to the motor which is designed in rated frequency. In this paper, the results of the study on the current-diagram method and its application are described as follows; (1) In order to discuss the construction of current diagram, the equation of the stator current with adjustable frequency was derived for applying the Current Diagram Method. (2) The radius, the center of the current circle and current vector locus at any desired frequency could be easily determined with the aid of both above mentioned equation and the standard current diagram at reference frequency. (3) This method could be applicable to the various types of Induction Motors, and this paper has dealt with its application to the capacitor, split-phase and 2-phase types of motors.

  • PDF

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

Controlling Characteristics of a Self-Excited D.C Moter Driven by a Thyristor Chopper (직류 Chopper방식에 의한 직류자격자식 전동기 특성에 대하여)

  • 천희영
    • 전기의세계
    • /
    • v.19 no.3
    • /
    • pp.10-17
    • /
    • 1970
  • The main focus of this paper is the analysis on the controlling characteristics of self-excited D.C. motor driven by thyristor chopper. The controlling characteristics of short shunt compound motor driven by poly phase multiple thyristor chopper is better than that of driven by single phase thyristor chopper. And we got the following conclusions. A. Motor current capacity could be increased by the multiplicity n increase. B. Speed-torque characteristics is linear and adquate for constant Horsepower motor. C. Maximum current Riple ratio is proportional to almost inverse m$^{2}$. Also here shows the stable conditions and semiconducterlize datas for controlling the self-excited D.C. motor driven by thyristor chopper.

  • PDF

Characteristics of Two Phase Operation of Two Winding Motor Driven by Reference Current Adaptive Inverter (기준전류추정형 인버어터에 의한 2 권선전동기의 2 상운전특성)

  • 원종수;정의상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.8
    • /
    • pp.289-298
    • /
    • 1984
  • The single phase induction motor is recently requested to meet a broad speed control and smooth forward and reverse operation due to the multifarious usages. This paper deals with two phase operation of a two winding motor by reference current adaptive inverter which can supply the currents to satisfy the balanced oeration into the main and auxiliary winding through the entire operational region. According to the roposed system, the starting, forward and reverse and variable speed control of a two winding motor eliminated the capacitor from the capacitor-run motor is also possible. The formation and its principle of the reference current adaptive inverter and characteristic analysis of the motor fed by this apparatus are described in this paper. Excellent agreement with the measured results and calculated values by computer simulation is obtained.

  • PDF

Development of Current-based Compact Digital Protective Relay for Induction Motor Protection (중용량 전동기보호를 위한 전류형 디지털 보호계전기 개발)

  • Jung, Jong-Jin;Kim, Joong-Pyo;Shin, Jong-Han;Park, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.140-142
    • /
    • 2005
  • This paper describes the current- based compact digital motor protective relay for low and high voltage induction motors, which are widely used in industrial and commercial power systems. The existing protective relays for motor protection had only overload, short circuit, reverse phase, open circuit and grounding protective elements, and measurement, start/stop control function. But in present day, for automation system, various functions are required, especially motor management and sequence control function and more. To meet these requirements, we developed an economic current-based compact digital motor protective relay which had various function to control, manage and monitor the induction motor.

  • PDF

Srability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting synchronous Motor (고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석)

  • 송명곤;윤용수;홍계원;이산진;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.25-29
    • /
    • 1999
  • The purpose of this paper is to find the magnetic filed distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation in a detailed model of the actual motor was analyzed through F.E.M.(finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can with-stand 4 A of current with staility. 4 A was the amount of current with stability. 4 A was the amount of current needed to achieve 600 A·turns which is required by the previous simulation aimed at developing this the flux damper reduces armature reactance during the motor operation. But it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor (브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

ON-OFF' Current Control Method with Frequency Limiter and Operating Characteristics of Brushless DC Motors Using Resolver (리졸버를 사용한 브러쉬 없는 직류전동기의 운전특성과 주파수 제한기를 가진 'ON-OFF'전류제어 방식)

  • 홍성수;권봉환;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.9
    • /
    • pp.396-402
    • /
    • 1986
  • Although the structure of the brushless DC motor is similar to the one of the permanent magnet synchronous motor, its operating characteristics are the same as those of the permanent magnet DC motor. This is the reason that the commutators and brushes in the permanent magnet DC motor can be replaced by the power semiconductor devices and rotor position sensors for the brushless DC motor. In this paper, a current control method is presented to make a sinusoidal current waveform for constant torque generation and the operating characteristics of the brushless DC motor using the resolver as the rotor position sensor is also presented and experimented.

  • PDF

Design of 65kw Class Switched Reluctance Motor for HEV Drive (하이브리드 자동차 구동용 65kW급 SR Motor의 설계)

  • Moon Jae-Won;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.358-363
    • /
    • 2005
  • This paper presents the reasonable design parameters of a switched reluctance motor to drive a hybrid electric vehicle by using the equivalent magnetic circuit method. The designed motor can be redesigned by using finite element analysis as a variation of the parameter for the purpose of improving performance. This paper shows that a flat-topped current of a phase can be made from a change of the lamination stack length for high average torque and a lower torque ripple. The change of current falling time as a variation of turn-off angle was shown by finite element analysis. The core loss and copper loss were described. The torque of the redesigned motor is suitable for low and high speed ranges to drive a HEV. which is verified by the speed-torque curve.

An Overview: Current Control Technique for Propulsion Motor for EV (전기자동차 구동용 모터를 위한 전류 제어 기술)

  • Lee, Hee-Kwang;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • Electric vehicles (EV) and hybrid EVs (HEV) are designed and manufactured by GM, Toyota, Honda, and Hyundai motors. The propulsion system design process for EV requires integrating subsystem designs into an overall system model to maximize the performance of a given propulsion architecture. Therefore, high-power density and high-torque density are important attributes required for EV applications. To improve torque and power density, propulsion motors are designed for saturation during high-torque operation. The nonlinearity associated with core saturation is modeled by incorporating the cross-coupling inductances, which also behave nonlinearly. Furthermore, in EV environments, the battery is directly connected to the DC link, and the battery changes depending on the state of charge. It will be onerous if as many optimal current commands as different $V_{dc}$ were made. This paper presents the optimal current commands in the various operating condition and the current control technique in EV environments.