• Title/Summary/Keyword: Motor control system

Search Result 4,025, Processing Time 0.036 seconds

Automatic Turn-off Angle Control for High Speed SRM Drives

  • Nashed Maged N.F.;Ohyama Kazuhiro;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents a new approach to the automatic control of the turn-off angle used to excite the Switched Reluctance Motor (SRM) employed in electric vehicles (EV). The controller selects the turn-off angle that supports and improves the performance of the motor drive system. This control scheme consisting of classical current control and speed control depends on a lookup table to take the best result of the motor. The turn-on angle of the main switches of the inverter is fixed at $0^{\circ}C$ and the turn-off angle is variable depending on the reference speed. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system.

Expert Supervisory Control for PID Control System (PID 제어시스템을 위한 전문가 관리 제어)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.192-195
    • /
    • 2008
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint, the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF

Fundamental Study of an Integrated Control Method for a Linear Motor Driven Container Crane System

  • An, Sang-Beak;Taniguchi, Yuki;Yamamoto, Shigehiro;Azukizawa, Teruo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1060-1067
    • /
    • 2009
  • The authors have proposed a linear motor driven container crane system, in which the linear motor to drive trolley chassis is also used to control swaying motion of a hanging container. To utilize the proposed system, it is needed to develop a power saving control system for the linear drive system. In this paper, an integrated control system to minimize required electric power to drive a trolley chassis with the suppressed swaying motion of a hanged container, is proposed. The validity of the proposed control system is investigated by the simulation using Simulink.

Development of DC MOTOR Remote Control System using Ethernet (Ethernet을 이용한 DC MOTOR 윈격 제어시스템 개발)

  • Lee, Jea-Ho;Kim, Yi-Cheal;Jung, Joon-Houng;Park, Ki-Heun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.437-440
    • /
    • 2003
  • Recently, the study on the design of NCS(Network Control System) using Ethernet is being rapidly progressed. NCS can be extensively applied in manufacturing automation, office automation, home automation, remote control and ect. A merit of NCS on based Ethernet is to make good use of advanced Internet environment and to apply a application of abundant TCP/IP upper layer to NCS. The purpose of this paper is to control a speed of DC-motor using NCS on based Ethernet. The control system is divided into a server part and a client part. A server transfers a value of reference speed of a DC-motor. A client receives a output signal of DC-motor and a reference input obtained from the server. A client computes a error of two signals and then makes a control input. The control input is transferred to a actuator In this pater, A controller uses a classical control using a general feedback. In this paper, a viewpoint is to compare performance of NCS with performance of a classical control and to analyze the cause of that.

  • PDF

Speed Control of Induction Motor Systems by a Digital Redesign Method (디지털 재설계법에 의한 유도 전동기 시스템의 속도제어)

  • 이동철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.27-38
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital redesign method and adopting a well known 2nd order model as the system model equation. The basic concept using the modeling equation is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc. just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. The effectiveness of the servo control system composed by the above mentioned design concept is illustrated by the experimental results in the presence of step reference change and generator load variation. It is observed from the experimental results that the steady state error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal change and load variation of generator.

  • PDF

Speed control of AC Servo motor using neural network (뉴럴네트웤을 이용한 AC 서보 전동기의 속도제어)

  • Ban, Gi-Jong;Yun, Gwang-Ho;Choe, Seong-Dae;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2747-2749
    • /
    • 2005
  • This paper presents an intelligent control system for an ac servo motor dirve to track periodic commands using a neural network. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF

Field Oriented Control of an Induction Motor in a Wide Speed Operating Region (벡터제어(制御) 유도전동기(誘導電動機)의 광역운전(廣域運轉))

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.79-85
    • /
    • 1997
  • This paper describes a control for the high performance induction motor drive system with a wide speed operating range and proposes a robust control method independent of motor parameter variation. For the operation below the rated speed, the high performance control is achieved by using the indirect field-oriented control with a speed sensor. In the high speed regain, the field weakening region with a large variation in motor parameters, the motor drive system can obtain the robustness to motor parameter variation by switchover to the direct field-oriented control. Also, the sensorless speed control using estimated speed is achieved in very high speed region that the utilization of speed sensor pulses is limited. And from experiments using high performance 32bit DSP for 2.2[kW] and 22[kW] laboratory induction motor drive systems, it is verified that the proposed opration algorithm provided a good performance.

  • PDF

The speed control system of an induction type a.c servo motor by vector control (벡터제어법에 의한 유도형교류 서보전동기의 속도제어에 관한 연구)

  • 홍순일;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.56-63
    • /
    • 1989
  • In recent years, a.c servo motors have been gradually replacing d.c sevo motors in various high-performance demanded aplications such as machine tools and industrial robots. In particular, the high-performance slip-frequency control of an induction motor, which is often called the vector control, is considered one of the best a.c drive. In this paper, the transient state equation and vector control algrithms of an induction motor are described mathematically by using the two-axis theory(d-q coordinates). According to the result of these algorithms, we scheme the speed control system for an induction type ac servo motor in which vector control is adopted to give tha a.c motor high performance. Motor drive is a PWM inverter using power MOS-FET, and is controlled in order to let the actual input current of the motor track the current reference obtained from a microcomputer(8086 cpu). Driving experiments are performed in the range of 0 to 3000 rpm, and it is verified that high speed response is possible.

  • PDF

An Induction Motor Motion Control System with Direct Torque Control (직접 토크제어에 의한 유도전동기의 위치제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1036-1038
    • /
    • 2000
  • This paper presents an implementation of digital motion control system of induction motor vector drives with a direct torque control(DTC) using the 16bit DSP TMS 320F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controllers for induction motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux observer of current model that inputs are current sensing of motor terminal and rotor angle, and optimal switching look-up table by using fully integrated control software. The developed system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

Comparison of PID Controllers by Using Linear and Nonlinear Models for Control of Mobile Robot Driving System (모바일 로봇 구동 시스템 제어를 위한 선형 및 비선형 모델 기반 PID 제어기 성능 비교)

  • Jang, Tae Ho;Kim, Youngshik;Kim, Hyeontae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • In this study, we conduct linear and nonlinear modeling of the DC motor driving system of a wheeled mobile robot, which is a nonlinear system involving dead zone, friction, and saturation. The DC motor driving system consists of a DC motor, a wheel, and gears. A linear DC motor driving system is modeled using a steady-state response and parameter measurements. A nonlinear DC motor driving model is identified with the use of the Hammerstein-Wiener method. By using these models, PID controllers for the DC motor system are then established. Each PID controller is applied as a low-level controller in order to achieve posture stabilization control for the real mobile robot. We also compare the performance of the proposed PID controllers in posture stabilization experiments by using several different final robot postures.