• Title/Summary/Keyword: Motor Unit

Search Result 585, Processing Time 0.02 seconds

A Study on the Life Cycle Establishment and Improvement of Main Parts for Electric Locomotive (전기기관차 주요부품의 수명주기 설정 및 개선방안에 관한 연구)

  • Lee, Doek Koo;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • The 8200-unit electric locomotive, which is a high-efficiency multipurpose electric locomotive, is a German model, namely BR152 series ES64F, and it is manufactured to suit the operating conditions in Korea. Since 2003, 83 locomotives have been introduced in Korea, and they have been operating in the general railway sector for both passenger and freight transport. Although more than 15 years have passed since their first introduction, owing to the characteristics of vehicles introduced overseas, responding promptly to failures has been difficult owing to problems related to factors such as transfer of technology and procurement of parts for maintenance. Furthermore, there have been difficulties in operating the locomotives on the basis of the manufacturer-recommended time-between-overhaul (TBO) cycle. Therefore, a new TBO should be determined. To support the development of a reliability-based maintenance system, this study conducted a reliability and TBO analysis by using failure data obtained from KOVIS, and future management measures are presented.

Chest Wall Reconstruction for the Treatment of Lung Herniation and Respiratory Failure 1 Month after Emergency Thoracotomy in a Patient with Traumatic Flail Chest

  • Seok, Junepill;Wang, Il Jae
    • Journal of Trauma and Injury
    • /
    • v.34 no.4
    • /
    • pp.284-287
    • /
    • 2021
  • We report a case of delayed chest wall reconstruction after thoracotomy. A 53-yearold female, a victim of a motor vehicle accident, presented with bilateral multiple rib fractures with flail motion and multiple extrathoracic injuries. Whole-body computed tomography revealed multiple fractures of the bilateral ribs, clavicle, and scapula, and bilateral hemopneumothorax with severe lung contusions. Active hemorrhage was also found in the anterior pelvis, which was treated by angioembolization. The patient was transferred to the surgical intensive care unit for follow-up. We planned to perform surgical stabilization of rib fractures (SSRF) because her lung condition did not seem favorable for general anesthesia. Within a few hours, however, massive hemorrhage (presumably due to coagulopathy) drained through the thoracic drainage catheter. We performed an exploratory thoracotomy in the operating room. We initially planned to perform exploratory thoracotomy and "on the way out" SSRF. In the operating room, the hemorrhage was controlled; however, her condition deteriorated and SSRF could not be completed. SSRF was completed after about a month owing to other medical conditions, and the patient was weaned successfully.

Effect of Wearing a Thermal Compression Sleeve on Isokinetic Strength and Muscle Activity of Wrist Flexors and Extensors

  • Kim, Ki Hong;Jeong, Hwan Jong;Hong, Chan Jeong;Kim, Hyun Sung;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.183-191
    • /
    • 2022
  • The purpose of this study, the wearing conditions of functional pressure clothing applied with the thermotherapy device were determined by three types (NW, CW, TCW) and the difference in isokinetic strength, muscle activity around the forearm was investigated and the effects of products mixed with thermotherapy and pressure treatment were verified. Ten men in their 20s were selected as subjects, and all subjects were randomly assigned three wearing conditions, and wrist flexion/extension exercise was performed at 30° and 90° angular velocity in isokinetic equipment. Peak torque, average power, and EMG were measured during exercise in all conditions. For peak torque, CW was significantly highest at velocity of 30°/sec flexion. Average power showed no significant difference by condition. In the angular velocity of 90°/sec, flexion was significantly higher in CW and TCW than in NW. As a result, wearing clothes with pressure effect and heat effect can show high efficiency in high muscle strength development and fast contraction activity during low speed exercise, and it is thought that it can show improvement of exercise ability through efficient recruitment of motor unit.

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

Research on Air Flow Rate Test Method for Blower System (송풍 시스템의 공기유량측정 방법에 관한 연구)

  • Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • This study conducted the measurements of air flow rate for blower systems with experiment and numerical. A new airflow rate test method is suggested, with which it is possible to accurate measurements and calculate the air flow rate for blower systems. The blower(axial fan) is an industrial fluid machine device that supplies a large amount of air by driving an impeller with an electric motor, and it is widely used throughout the industry such as steel, power plant, chemical, semiconductor, LC D, food, and cement. The airflow from the blower is for exchanging the heat in the cooling unit or heat exchanger. The temperature of coolants and hydraulic oil primarily depends on the amount of airflow rate through the cooling package so its accurate estimation is very important. Moreover, it required a larger investment in time and cost since it could not be executed until the system is actually made. Therefore, this research is intended to examine the phenomenon of air flow pattern when testing air flow rate, suggested new test method, and show the result of the validation test.

A Study on the Low Cost Testing System Development of the Low Speed and High Torque Harsh Reducer (저속 고토크 가혹감속기의 저비용 테스트 시스템 개발에 관한 연구)

  • Park, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.379-386
    • /
    • 2022
  • The goal of this research is to verify a performance test system for a low speed, high torque, and harsh reducer at low cost. The reducer rotates a cooling fan with a diameter of 10 meters, in a high temperature (50℃) cooling tower in a geothermal power plant. It requires about 500 kgf·m torque and 47.75 kW power to rotate the fan at a maximum power condition. An expensive dynamometer is commonly used for performance test of a motor or a reducer. In this paper, a low cost system is developed using a hydraulic pump as a load unit to generate torque instead of a dynamometer. We accurately calculated the required power, the flow meter, and the pressure of the pump, and selected to design and optimize the system at minimal cost. The system also applied another reverse reducer and a gearbox to increase the rotational speed and to reduce the torque from the low speed and high torque target reducer. This allows low-cost systems to be built using inexpensive components. The developed system was able to successfully measure the high torque and the low rotational speed of the target reducer at high temperature.

Starting and Normal Operation Control Logic Research of Small Gas Turbine Engine (소형 가스터빈엔진의 시동 및 정상운용구간 제어로직 연구)

  • Lee, Kyungjae;Rhee, Dong-Ho;Kang, Young Seok;Kho, Seonghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • As part of the commercialization research of small gas turbine engines, starting and normal operation control logic research of small gas turbine engine was conducted. It was investigated how the igniter, starting motor and fuel pump/valve are controlled during the ignition and normal operation process and it was applied to the prototype engine control unit(ECU) of the small gas turbine engine for commercialization research. Based on the ground test results, an ECU for flight test is being developed, and after completion of the development, an altitude test will be performed through an altitude test facility of Korea Aerospace Research Institute.

Design of STM32-based Quadrotor UAV Control System

  • Haocong, Cai;Zhigang, Wu;Min, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.353-368
    • /
    • 2023
  • The four wing unmanned aerial vehicle owns the characteristics of small size, light weight, convenient operation and well stability. But it is easily disturbed by external environmental factors during flight with these disadvantages of short endurance and poor attitude solving ability. For solving these problems, a microprocessor based on STM32 chip is designed and the overall development is completed by the resources such as built-in timer and multi-function mode general-purpose input/output provided by the master micro controller unit, together with radio receiver, attitude meter, barometer, electronic speed control and other devices. The unmanned aerial vehicle can be remotely controlled and send radio waves to its corresponding receiver, control the analog level change of its corresponding channel pins. The master control chip can analyze and process the data to send multiple sets pulse signals of pulse width modulation to each electronic speed control. Then the electronic speed control will transform different pulse signals into different sizes of current value to drive the motor located in each direction of the frame to generate different rotational speed and generate lift force. To control the body of the unmanned aerial vehicle, so as to achieve the operator's requirements for attitude control, the PID controller based on Kalman filter is used to achieve quick response time and control accuracy. Test results show that the design is feasible.

The Study on the Standardization of the Maximum Acceleration of the Electric Multiple Unit through the Analysis of the Traction and the Adhesion Characteristics (견인력 및 점착력 특성 분석을 통한 전동차 최대 가속도 규격 선정에 관한 연구)

  • Kim, Jungtai;Kim, Moo Sun;Ko, Kyeongjun;Jang, Dong Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7934-7940
    • /
    • 2015
  • The raise of the acceleration can be one of possible methods to increase the scheduled speed of the metropolitan railway system. It is possible to raise the acceleration to the some point by increasing the traction power of the motor. However, there is a limit of the acceleration because the traction power over some level related to the adhesion causes a slip, which prevents from accomplishing the target acceleration. The running resistance is also an important factor to consider. Both the adhesion and the running resistance as well as the traction power vary according to the velocity. Therefore, the standardization of the acceleration needs the analysis of these factors as a function of velocity. In this study, we focus on the advanced urban transit unit(AUTS) for the standardization. We derive a novel equation of the adhesion suitable for the AUTS by investigation of the traction and adhesion equation as well as the experiment data. And finally we propose the standard of the acceleration based on this analysis.

A study on the design of air conditioning system in the mushroom cultivation greenhouse (버섯재배사의 공조시스템 설계에 대한 연구)

  • Ryu, Kyung-Jin;Son, Jae-Hwan;Han, Chang-Woo;Nah, Kyu-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.743-750
    • /
    • 2017
  • It is important to ensure a uniform temperature distribution in greenhouses for the mushroom cultivation. The air temperature of the mushroom cultivation greenhouse is made uniform by supplying a constant air temperature with the underground air. The mushroom cultivation array in a greenhouse in seven columns and four rows can make smooth air flows between the rows and prevent air differences between the top and bottom. The buoyancy effect in the entering air of 0.5m/s based on following density difference depending on initial internal temperature needs to be considered. The locations of the Fan Coil Unit (FCU) and fan were defined through flow analysis in a greenhouse to distribute the optimal uniform temperature. In this study, the air conditioning system of a greenhouse with a sandwich heat insulting panel shape which is composed of a FCU and fan was designed by flow analysis. A relatively uniform temperature distribution can be formed because the circulation path of air becomes longer in the different locations of the FCU (inlet) and fan (outlet) through the internal temperature and flow analysis. The cultivation and quality uniformity of the mushrooms could be promoted through these environmental improvements.