• Title/Summary/Keyword: Motor Torque Analysis

Search Result 899, Processing Time 0.022 seconds

An Analysis of Static and Dynamic Characteristics of Torque Motor (토크모터의 정특성과 동특성 해석)

  • Huh, J.Y.;Park, C.S.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • In the early of 1950, the high response magnetic torque motor was developed for driving electro-hydraulic servo valves. Since then it has been broadly used for industrial application and the research of development or improvement of the torque motor is still being conducted. The purpose of this study is to present useful design criteria for the torque motor design. For this, torque motor is modelled and linearized. The static characteristics of the torque motor are investigated by direct computation of the derived linearlized equations. The dynamic characteristics of the torque motor are investigated with the derived transfer function by using Matlab and compared with the results of the linearlized analysis by using AMESim simulation with actual values of the physical parameters. Finally, the design criteria obtained from the analysis are reviewed.

A Study on the Detent Torque Reduction of Claw Pole Permanent Magnet Type Motor

  • Jung, Dae-Sung;Lee, Ju;Lee, Sang-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.125-132
    • /
    • 2013
  • This paper has done a three-dimensional FEM analysis of the PM claw pole stepping motor. As magnetization happens in the z-axis, which does not have a constant value, three-dimensional FEM analysis is necessary for characteristic analysis of PM claw pole stepping motors. Because it is a type of permanent magnet motor, the PM claw pole stepping motor naturally has a detent torque. This torque is known to show negative effects on motor performance. To improve motor performance, reducing the detent torque is very important during the motor design. This paper applied DOE for optimization of stator pole design of the motor. Also, we compared motor performance by applying a different type of rotor shape, dividing the permanent magnet. To verify the simulation results, an experiment was done.

Sensitivity Analysis of Design Parameters for Reduction of Cogging Torque in Brushless DC Motors used for Automobile Part (자동차 부품용 BLDC 모터 내의 코깅 토크 저감을 위한 설계 변수의 민감도 해석)

  • 황상문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.235-243
    • /
    • 1998
  • For motor operation at low speeds and loads, torque pulsation by the cogging torque is often a source of vibration and control difficulty. In this paper, the magnetic field of a motor is calculated by finite element method. The periodic cogging torque is determined using Maxwell stress method and time stepping method, and then decomposed using fourier series expansion, The purpose of this paper is to characterize design parameters on the cogging torque and to design a permanent magnet motor with a cogging torque less vulnerable to vibration, without sacrificing the motor performance. The design parameters include stator slot width, permanent magnet slot width, airgap length and magnetization direction. A new design with a less populated frequency spectrum of the cogging torque is proposed after characterizing individual effect of design parameters. Magnet pole edge shaping, by gradually increasing the cogging torque with reduced higher harmonics.

  • PDF

Cogging Torque Analysis of BLDC Motor with the Axial Displacement of Rotor (축방향 변위를 가진 BLDC 전동개의 코깅토크 해석에 관한 연구)

  • Kim, Young-Kyoun;Lee, Jeong-Jong;Nam, Hyuk;Hong, Jung-Pyo;Jin, Young-Woo;Hur, Yoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.368-372
    • /
    • 2003
  • This paper deals with the cogging torque analysis of a BLDC Motor, which has the axial displacement of its rotor. In order to improve the torque performance of the BLDC motor, Brushless motor is commonly designed to minimize its cogging torque. Therefore, a skewed model is used to reduce the cogging torque. However, even though the rotor or stator is skewed, the cogging torque could be increased by the axial displacement of the rotor, which occurs when the BLDC Motor is manufactured. Therefore, this paper investigates the effect of the axial displacement of the rotor on the cogging torque. In order to investigate the effect, an analysis method, which is 3D-EMCN in combination with 2D-FEM, is proposed to analyze the cogging torque of the BLDC motor with the axial displacement of its rotor, and the result of the analysis is verified by comparison with the experimental result.

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

  • Hwang, Yong-Suk;Yoon, Myung-Hwan;Park, Jin-Cheol;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.266-274
    • /
    • 2017
  • In this paper, torques of two motors are compared by Finite Element Analysis (FEA). One has a symmetric rotor structure and the other has an asymmetric rotor structure. The comparison shows that the asymmetric rotor structured motor has reduced torque ripple compared to the symmetric. The torque of the compared motor models was analyzed by separating into magnetic torque and reluctance torque. Through the analysis of torque component separated, it is shown that the magnetic torque and the reluctance torque compensate each other in the motor with the asymmetric structure rotor. Here "compensate" means decrementing the effect of one or more harmonics. It is shown how this compensation appears between the magnetic torque and the reluctance torque by looking into back electro motive force (emf) and the relative permeability distribution of rotor core.

Analysis of the Torque Characteristics of a Multi-Degrees of Freedom Surface Permanent-Magnet Motor

  • Kang, Dong-Woo;Go, Sung-Chul;Won, Sung-Hong;Lim, Seung-Bin;Lee, Ju
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.36-39
    • /
    • 2010
  • The multi-degrees of freedom surface permanent-magnet motor (Multi-D.O.F. SPM) has several degrees of freedom operations that are defined as the "roll", "yaw", and "pitch". Normally, the torque that is generated to rotate a rotor includes ripples. The analysis of the torque ripples is important for improving motor performance. In terms of the electric analysis, torque ripple occurs as a result of many factors, including the rotor and stator structures, the distribution of the air-gap flux density, and the waveform of the current in the coils. In particular, the torque ripple is an important factor in the stable operation of the Multi-D.O.F. SPM. Therefore, in this work, the torque ripple was analyzed using various types of magnetization for the permanent magnet. An improved model was proposed for the Multi-D.O.F. SPM based on this analysis.

Sensitivity Analysis of Geometrical Parameters of a Switched Reluctance Motor with Modified Pole Shapes

  • Balaji, M.;Ramkumar, S.;Kamaraj, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2014
  • A major problem in Switched Reluctance Motor (SRM) is torque ripple, which causes undesirable acoustic noise and vibration. This work focuses on reducing the undesirable torque ripple in SRM by modifying stator and rotor geometry. This paper presents a comparative study on torque ripple minimization in SRM with modified pole shapes such as stator pole taper, stator pole face with non-uniform air gap and pole shoe attached to rotor pole. Further this paper presents a detailed sensitivity analysis of the effect of different geometrical parameters that alter the pole face shapes on the performance of SRM. The analysis is performed using finite-element method considering average torque and torque ripple as performance parameters. Based on the analysis, a design combining stator pole taper with non-uniform air gap is proposed to improve the torque characteristics of SRM. The dynamic characteristics of the proposed design are simulated and the results show satisfactory reduction in torque ripple.

FEA-based Torque Ripple and Noise Reduction of DC Motor for Automotive Air-Conditioning (유한요소 해석 기반 자동차 공조용 DC모터 토크 리플과 소음 저감에 관한 연구)

  • Hwang, Myeonghwan;Kim, Donghyeon;Yang, Seungjin;Cha, Hyunrok;Han, Jongho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1895-1898
    • /
    • 2017
  • This paper discusses methods for the torque ripple and noise reduction of DC motors for automotive air-conditioning based on electromagnetic field analysis. The target of the motor is a blower motor, and to reduce cogging torque and the torque ripple, the optimum model was selected by deforming the brush or commutator shape. In addition, to reduce the cogging torque, the model design was carried out by applying the skew method and the magnetization method of a magnet to the rotor. For optimization, the shape, material, and drive system of the motor were selected using an electromagnetic field as the analysis tool, and the method of reducing the cogging torque was applied to 4-pole, 12- and 13-slot motors considering the mechanical part. Lastly, this paper confirmed thatthemethod, which proposed how much noise, cogging torque, and vibration are reduced, improves through practical analysis.

Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection (고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감)

  • Kwon, Soon-O;Lee, Jeong-Jong;Lee, Geun-Ho;Hong, Jung-Pyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

Analysis of The Generating Torque Characteristics of 2-Phase lnduction Motor in Phase Control. (이상유도전동기의 립상제어시 발생토오크에 대한 해석)

  • 원종수;장도현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.289-297
    • /
    • 1988
  • In this paper, the analysis of a generating torque characteristics of 2-phase induction motor driven with the phase control method is presented. The generating torque equations which represent average torque and pulsating torque are derived from the elementary machine model. The calculating equations which can get the values of average torque and pulsating torque is expressed by the parameters of the equivalent circuit of 2-phase induction motor. According to the calculating equations, these performance characteristics are investigated under various conditions. Finally, a strategy to eliminate non-linearity and pulsating torque generated in driving 2-phase induction motor with the phase control method is presented.

  • PDF