• Title/Summary/Keyword: Motor Thermal Management

Search Result 17, Processing Time 0.027 seconds

Thermal management system for electric vehicle batteries and technology trends (전기자동차용 배터리 및 열관리시스템 기술동향)

  • Seo, Hyun Sang;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • Challenges the automotive industry as the increase in consumption of oil and energy, $CO_2$ emissions of global warming, caused by exhaust emissions and urban air pollution, it is time for a deal is needed. The solution of these highly regarded in the market as there is a demand of electric cars. In this study, electric car motor, battery and high-voltage core components, including the drive motor of the effective thermal management technologies, thermal management of the battery and the drive motor to evaluate the technology and development trends.

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

Effects of Design Parameters on the Thermal Performance of a Brushless DC Motor (BLDC 모터의 열적 성능에 대한 설계 인자의 영향)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.141-148
    • /
    • 2008
  • A numerical simulation of brushless DC motor is performed to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet. Recirculation zone exists in the tiny interfaces between windings. The flow separation causes poor cooling performance in bearing part and therefore the redesign of the bearing groove is required. The design parameters such as the inlet location, geometry and bearing groove threshold angle have been selected in the present simulation. As the inlet location moves inward in the radial direction, total incoming flow rate and heat transfer rate are increased. Total incoming flow rate is increased with increasing the inlet inner length. The effect of the bearing groove threshold angle on the thermal performance is less than that of other design parameters.

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young;Lee, Bumhee;Park, In-Kyung;Park, Hyun Ho;Jung, Heon Seob;Park, Joon Chul;Cho, Hyun Chul;Nam, Jae-Do
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

Numerical investigation of thermo-flow characteristics in BLDC motor (BLDC 모터 내 열.유동 해석)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2540-2545
    • /
    • 2007
  • A computational study of BLDC motor is presented to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet and the inflow rates are predicted more at the front-side inlet than at the rear-side, which can be ascribed to the different pressure distribution. Recirculation zone appears in the tiny interfaces between windings, however, showing the enhanced cooling performance due to the higher velocity distribution near the rotor wall. In contrast, flow separation and incline angle of bearing groove, and relatively slower velocity distribution cause poor cooling performance and therefore the redesign of the bearing groove is significantly required.

  • PDF

Analysis of the Causes of Cracks in Rocket Propellant in Thermal Cycling Test (로켓탄 추진기관 온도반복시험 균열 원인분석)

  • Bak, Jin Man;Park, Soon Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2023
  • Purpose: The purpose of this study is to derive solutions and prevent similar cases from occurring by analyzing the causes of cracks found in temperature cycling tests of rocket motor. Methods: By combining the results of the current state confirmation test, non-destructive test, domestic and foreign rocket motor comparison test, cutting test, and adhesion test according to the number of times to apply mold release agent, a Cause and Effect Diagram analysis was performed to derive the cause of cracks. Results: Through this study, 26 factors that could cause cracking in rocket motors during temperature cycling tests were identified. Through various additional test results, a total of five causes were identified, including chemical and structural design of the joint between the propellant and stress relief insert, omission of procedure in the manufacturing procedures, natural aging due to temperature, and load accumulation due to temperature changes. The fundamental cause was confirmed to be insufficient consideration of the release properties of the propellant and stress relief insert. Conclusion: During the design process, it was confirmed that this could be solved by structurally or chemically designing the insert so that it does not combine with the propellant, or by applying a mold release agent during the manufacturing process.

Characteristic of Current and Temperature according to Normal and Abnormal Operations at Induction Motor of 2.2 kW and 3.7 kW (2.2 kW와 3.7 kW 유도전동기의 정상과 구속운전에 따른 전류 및 온도 특성)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2023
  • This study analyzed the current and temperature characteristics of major components of an induction motor during normal and abnormal operations as functions of the difference in the rated capacities of medium and large-sized motors widely used in industrial settings. The temperature rise equation of the induction motor winding was derived through locked-rotor operation experiments and linear regression analysis. When the ambient temperature is 40 ℃, the time to reach 155 ℃, the temperature limit of the insulation class (F class) of the winding of the induction motor, was confirmed to be 48 seconds for the 2.2 kW induction motor and 39 seconds for the 3.7 kW induction motor. This means that when the rated capacity is large or the installation environment is high temperature, the time to reach the temperature limit of the insulation class during locked-rotor operation is short, and the risk of insulation deterioration and fire is high. In addition, even if the EOCR (Electronic Over Current Relay) is installed, if the setting time is excessively set, the EOCR does not operate even if the normal and locked-rotor operation of the induction motor is repeated, and the temperature limit of the insulation grade of the winding of the induction motor is exceeded. The results of this study can be used for preventive measures such as the promotion of electrical and mechanical measures for the failure of induction motors and fire prevention in industrial sites, or the installation of fire alarm systems.

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.