• Title/Summary/Keyword: Motor System

Search Result 7,101, Processing Time 0.033 seconds

The Effect of Forward Head Posture Correctional Device During Computer Work (컴퓨터 작업 시 전방머리자세 교정장치의 효과)

  • Yi, Chung-Hwi;Yoo, Won-Gyu;Kim, Min-Hee
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • Work-related musculoskeletal disorder has been associated with long hours of computer work and prolonged periods of static posture. In clinical settings, postural correction is a common treatment approach for individuals with neck, shoulder, and back pain. This study was designed to identify the effect of Forward Head Posture Correctional Device during computer work. Twelve healthy adults (mean age, 27.4 yrs; mean height, 165.0cm mean weight, 65.8 kg) participated in the study. They had no medical history of neurological or surgical problems with their upper extremity. The subjects were asked to perform Head Forward Posture under the guidance of physical therapists and the measured angles were analyzed using a 3-D motion analysis system. Markers were placed on the C7 spinous process, tragus of the ear and forward head angle was between the line from the tragus to the C7 line and the Y-axis at the C7. The statistical significance of difference between, "without" and "with" correctional device was tested by paired t-test. A level of significance was set at ${\alpha}$=.05. In comparison of the computer work between "without" and "with" correctional device, Forward Head Angle was showed significant difference (p<.05). In conclusion, the range of Forward Head Angle was significantly decreased during computer work with the correctional device. Further research is needed to understand the nature of motor control problems in deep muscles in patients with neck, shoulder, and back pain.

  • PDF

Autolanding Mission Planning of the IT Convergence Hoverable UAV (IT 융합 회전익 무인항공기의 자동 착륙 임무수행)

  • Jung, Sunghun;Kim, Hyunsu
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.9-16
    • /
    • 2017
  • Researchers are now faced with a limited flight time of the hoverable UAV due to the sluggish technological advances of the Li-Po energy density and try to find a bypassing solution for the fully autonomous hoverable UAV mission planning. Although there are several candidate solutions, automated wireless charging is the most likely and realistic candidate and we are focusing on the autolanding strategy of the hoverable UAV in this paper since it is the main technology of it. We developed a hoverable UAV flight simulator including Li-Po battery pack simulator using MATLAB/Simulink and UAV flight and battery states are analyzed. The maximum motor power measured as 1,647 W occurs during the takeoff and cell voltage decreases down to 3.39 V during the procedure. It proves that the two Li-Po battery packs having 22 Ah and connected in series forming 12S1P are appropriate for the autolanding mission planning.

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.

Control of the Third Harmonics Injected PWM Inverter in Over Modulation Mode (과변조 영역에서의 3고조파 주입형 PWM 인버터 제어)

  • 김영렬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.101-110
    • /
    • 2002
  • A method to control the inverter output voltage lineally in over modulation mode of the third harmonics injected PWM inverter is proposed. The third harmonics injected PWM has a extended linear region compared with the sine PWM. But it still has a maximum voltage about 90% compared with the six step inverter. Therefore, to control the output voltage linearly in over modulation mode, analyzing the relationship between the modulation index and the peak of the fundamental component of the modified reference voltage, we can settle the problem in over modulation mode without iteration. Then we can increase the maximum fundamental component of the third harmonics injected PWM inverter comparative to six-step inverter continuously in over modulation mode. The simulation results of the inverter-induction motor system shows the validity of this method and experimental results prove it.

On the Design of an Effective Lead/Lag Controller for DC Motors (직류모터를 위한 효과적인 Lead/Lag 제어기 설계에 관한 연구)

  • Kim, Wang-Sun;Lee, Byoung-Hoon;Won, Dae-Ho;Yang, Yeon-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.959-962
    • /
    • 2010
  • There are a lot of methods available in designing PID(Proportional-Integral-Derivative) and Lead/Lag controllers in the industrial field of technology because of their useful advantages such as simplicity and robustness. In an early stage of development process, a computational simulation approach is a very efficient tool for the designs of the controllers. Thus, in this paper we propose a cost-effective, and practically efficient. The PID and Lead/Lag controllers. To show the effectiveness of the proposed Lead/Lag controller, we compare and contrast of the simulation results of each controller with the Matlab simulator. Although we have only considered the DC motors for the controllers, but it could be extended in future developments to more complex plants. As a result, the proposed frameworks could be used to solve industrial problems such as a reduction in development cycle time and minimizing system errors.

  • PDF

A new active common mode voltage Damper to suppress high frequency leakage current of PWM Inverter (새로운 능동형 커먼 모드 전압 감쇄기를 이용한 PWM 인버터의 고주파 누설전류 억제)

  • 구정회;이상훈;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.423-431
    • /
    • 2001
  • This paper proposes a new active common-mode voltage damper circuit that is capable of suppressing a common-mode voltage produced in the PWM VSI-fed induction motor drives. The new active common mode voltage damper is consists of a four-level half-bridge Inverter and a common mode transformer with a blocking capacitor. In order to reduce the common mode voltage and high frequency leakage current the active common mode damper applies to the PWM inverter system the compensated voltage of which the amplitude is the same as the common mode voltage and of which the polarity is opposite to the common mode voltage. Simulated using P-SPICE and experimental results show that common-mode voltage damper makes contributions to reducing a high frequency leakage current and common-mode voltage.

  • PDF

Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine (서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측)

  • Yang, Hac-Jin;Shin, Hyun-Chan;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • We developed a prediction model of assistance force for the opening/closing of an automobile door depending on the condition of the parking ground. The candidates of the learning models for the operating assistance force were compared to determine the proper force according to the slope and user's force, etc. The reduced experimental model was developed to obtain learning data for the estimation model. The learning algorithm was composed to predict the assistance force to incorporate real assistance force data. Among these algorithms, an Artificial Neural Network (ANN) and Support Vector Machine(SVM) were applied and the adaptability was compared between these models. The SVM provided more adaptability for the learning process of the door assistance force prediction. This paper proposes a system for determining the assistance force to control a door motor to compensate for the deviation of required door force in the slope condition, as needed in the plane condition.

The Effect Analysis of Postural Stability on the Inter-Segmental Spine Motion according to Types of Trunk Models in Drop Landing (드롭착지 동작 시 체간모델에 따른 척추분절운동이 자세안정성 해석에 미치는 영향)

  • Yoo, Kyoung-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • The purpose of this study was to assess the inter-segmental trunk motion during which multi-segmental movements of the spinal column was designed to interpret the effect of segmentation on the total measured spine motion. Also it analyzed the relative motion at three types of the spine models in drop landing. A secondary goal was to determine the intrinsic algorithmic errors of spine motion and the usefulness of such an approach as a tool to assess spinal motions. College students in the soccer team were selected the ten males with no history of spine symptoms or injuries. Each subject was given a fifteen minute adaptation period of drop landing on the 30cm height box. Inter-segmental spine motion were collected Vicon Motion Capture System (250 Hz) and synchronized with GRF data (1000 Hz). The result shows that Model III has a more increased range of motion (ROM) than Model I and Model II. And the Lagrange energy has significant difference of at E3 and E4 (p<.05). This study can be concluded that there are differences in the three models of algorithm during the phase of load absorption. Especially, Model III shows proper spine motion for the inter-segmental joint motion with the interaction effects using the seven segments. Model III shows more proper observed values about dynamic equilibrium than Model I & Model II. The findings have shown that the dynamic stability strategy of Model III toward multi-directional spinal motion supports for better function of the inter-segmental motor-control than the Model I and Model II.

Effects of Electro-acupuncture and Therapeutic Exercise on Nervous system in the Ischemic Stroke Rats (전침자극과 운동치료가 허혈성 뇌졸중 백서모델의 신경계에 미치는 영향)

  • Yoo, Young-Dae;Kim, Gi-Do;Chun, Jin-Sung;Jeong, Hyun-Woo;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.1014-1020
    • /
    • 2006
  • This study was intended to examine the effects of electroacupuncture(EA) and therapeutic exercise on the improvement of exercise function, BNDF, and HSP70 protein expression in an ischemic stroke model induced by MCA occlusion. Experiments were conducted for 1, 3 days, 1, 8 weeks respectively. Group I was a group of EA and therapeutic exercise; Group II was a group of therapeutic exercise; Group III was a group of EA; Group IV was a sham group of EA; Group V was a control group; and Group VI was a sham group without ischemic stroke. In each group, neurologic motor behavior test, histologic observations, BDNF, and HSP70 expression were observed and analyzed. The following results were obtained. The results of behavior test suggest that 8 weeks after ischemic stroke was induced, Group I improved in degeneration and inflammation of muscle fiber and decreased in destruction of nerve cells and cerebral infarction, indicating a similar state of muscle fiber and brain to Group VI. In immunohistochemical observations, Group I showed increase in BDNF and decrease in HSP70. Based on these results, EA and therapeutic exercise may improve muscle atrophy and change in BDNF and HSP70 expression of ischemic stroke rats and contribute to the improvement of exercise function.