• Title/Summary/Keyword: Motor Parameter

Search Result 1,020, Processing Time 0.024 seconds

A study on A-pillar & wiper wind noise estimation using response surface methodology at design stage (반응면 기법을 이용한 A필라/와이퍼 풍절음 예측 연구)

  • Rim, Sungnam;Shin, Seongryong;Shin, Hyunsu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.5
    • /
    • pp.292-299
    • /
    • 2018
  • The vehicle exterior design is the main parameter of aerodynamic wind noise, but the modification of it is nearly impossible at a proto-type stage. Therefore, it is very important to verify exterior design and estimate the correct wind noise level at the early vehicle design stages. The numerical simulations of aerodynamic wind noises around A-pillar and wiper were developed for specific vehicle exterior designs, but could not be directly used for the discussions with designers because these need complex modeling and simulation process. This study proposes new approach to A-pillar and wiper wind noise estimation at design stage using response surface methodology of modeFRONTIER, of which database is composed of PowerFLOW simulation, PowerCLAY modeling, SEA-Baced (Statistical Energy Analysis-Based) interior noise simulation, and turbulent acoustic power simulation. New design parameters are defined and their contributions are analyzed. A state-of-the-art, easy and reliable CAT (Computer Aided Test) tool for A-pillar and wiper wind noise are acquired from this study, which shows high usefulness in car development.

Development of the Robot Manipulator for Kinematies (기구학적 분석을 이용한 로봇 매니퓰레이터 개발)

  • Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study is kinematics for the manipulator development of cucumber harvesting. A theory value was verified by repeated error measurement after the forward kinematics or inverse kinematics analysis of manipulator. Manipulator is consisted of one perpendicular link and two revolution link. The transformation of manipulator can be valued by kinematics using Denavit-Hartenberg parameter. The value of inverse kinematics which is solved by three angles faction shows two types. Repeated errors refered maximum 2.60 mm, 2.05mm and 1.55 mm according to X, Y, Z axis. In this study, the actual coordinates of maximum point and minimum point were agreement in the forward kinematics or inverse kinematics. The results of repeated error measurement were reflect to be smaller compared to a diameter of cucumber. measurement errors were determined by experimented errors during the test. For reducing errors of manipulator and improving work efficiency, the number of link should be reduced and breeding and cultural environment should be considered to reduce the weight and use the hard stuff. The velocity of motor for working should be considered, too.

Distribution of Weakness at the Lower Extremity of Hemiparesis Patients (편측부전마비환자의 하지에서의 위약증상의 분포)

  • Park, Gun-Ju;Hah, Jung-Sang;Kim, Wook-Nyeun
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.101-110
    • /
    • 1997
  • The maximal voluntary strength of knee extension and flexion on both the right and left sides was measured in patients with hemiparesis of upper motor neuron type and in a group of normal subjects. Significant differences of maximal voluntary strength were found between male and female but the ratio of flexor to extensor strength did not vary significantly between the sides, between the sex in normal subjects. The maximal voluntary strength of uninvolved side were not reduced significantly but involved side reduced significantly in patients. The ratio of flexor to extensor strength in hemiparetic side was significantly less than the ratio for the normal subjects but not significant difference in uninvolved side of patients. According to the above results, the maximal voluntary strength of flexion was more reduced than that of the extension in lower extremity of hemiparesis patients. The strength ratio of flexion to extension was a useful parameter for guiding the rehabilitation of hemiparesis.

  • PDF

The Effect of Wheelchair Propulsion on Carpal Tunnel Syndrome of Wrist Joint

  • Kong, Jin-Yong;Kwon, Hyuk-Cheol;Chang, Ki-Yeon;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.7-17
    • /
    • 2004
  • Individuals who propel wheelchairs have a high prevalence of upper extremity injuries (i.e., carpal tunnel syndrome, elbow/shoulder tendonitis, impingement syndrome). Musculoskeletal injuries can result from overuse or incorrect use of manual wheelchairs, and can hinder rehabilitation efforts. To better understand the mechanisms of upper extremity injuries, this study investigates the motion of the wrist during wheelchair propulsion. This study also examines changes in the variables that occur with fatiguing wheelchair propulsion to determine how the time parameters of wheelchair propulsion and the state of fatigue influence the risk of injury. A two dimensional (2-D) analysis of wrist movement during the wheelchair stroke was performed. Twenty subjects propelled a wheelchair handrim on a motor-driven treadmill at two different velocities (50, 70 m/min). The results of this study were as follows; The difference in time parameters of wheelchair propulsion (cadence, cycle time, push time, recovery time, and PSP ratio) at two different velocities was statistically significant. The wrist kinematic characteristics had statistically significant differences at two different velocities, but wrist radial deviation and elbow flexion/extension had no statistically significant differences. There were statistically significant differences in relation to fatigue in the time parameter of wheelchair propulsion (70 m/min) between initial 1 minute and final 1 minute. The wrist kinematic characteristics between the initial 1 minute and final 1 minute in relation to fatigue had statistically significant differences but the wrist flexion-extension (50 m/min) had no statistically significant differences. According to the results, the risk of musculoskeletal injuries is increased by fatigue from wheelchair propulsion. To prevent musculoskeletal injuries, wheelchair users should train in a muscle endurance program and consider wearing a splinting/grove. Moreover, wheelchair users need education on propulsion posture, suitable joint position, and proper recovery patterns of propulsion.

  • PDF

Development of Measurement Device for Bending Stiffness of Footwear (신발의 굽힘강성 측정 장비의 개발)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1078-1084
    • /
    • 2011
  • In design of sport footwear, bending stiffness of its toe part is an important factor though it can be hardly measured. This paper introduces a device for measuring the bending stiffness. The device is simply designed with aluminum frames, one AC motor, two load-cells, one encoder and control hardwares. The mechanism measuring the bending moment of a shoe is described. Then, it was used to observe how the midsole material and design of a sports shoe affect on its bending stiffness. For the experiments, various specimens prepared, where each midsole of the specimens is different in terms of material, thickness and hardness. With those specimens, experiments were performed by using the device and then the bending stiffness was computed by applying the least square curve fitting after the bending moment data were measured. The specimen with Poly-urethane(PU) midsole has the higher bending stiffness than the one with Phylon(PH) midsole, and the midsole thickness affects more on the bending stiffness than the midsole hardness. Based on those results, it can be concluded that the measurement device can provide consistent bending stiffness data to sports footwear and the bending stiffness of a footwear measured by the developed device can be used as a major parameter in the footwear design.

Problems of Stator Flux Estimation in DTC of PMSM Drives

  • Kadjoudj, M.;Golea, N.;Benbouzid, M.E.H
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.468-477
    • /
    • 2007
  • The DTC of voltage source inverter-fed PMSMs is based on hysteresis controllers of torque and flux. It has several advantages, namely, elimination of the mandatory rotor position sensor, less computation time, and rapid torque response. In addition, the stator resistance is the only parameter, which should be known, and no reference frame transformation is required. The DTC theory has achieved great success in the control of induction motors. However, for the control of PMSM drives proposed a few years ago, there are many basic theoretical problems that must be clarified. This paper describes an investigation into the effect of the zero voltage space vectors in the DTC system and points out that if using it rationally, not only can the DTC of the PMSM drive be driven successfully, but torque and flux ripples are reduced and overall performance of the system is improved. The implementation of DTC in PMSM drives is described and the switching tables specific for an interior PMSM are derived. The conventional eight voltage-vector switching table, which is namely used in the DTC of induction motors does not seem to regulate the torque and stator flux in a PMSM well when the motor operates at low speed. Modelling and simulation studies have both revealed that a six voltage-vector switching table is more appropriate for PMSM drives at low speed. In addition, the sources of difficulties, namely, the error in the detection of the initial rotor position, the variation of stator resistance, and the offsets in measurements are analysed and discussed.

Study on the control of VCM and its application to the vibration isolator (VCM의 제어 및 제진 장치 응용에 관한 연구)

  • Kim, Jin-Man;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The degradation of durability and increase of fatigue on the ship are mainly caused by vibration of the engine and rotating machineries. The damper to minimize the influence from vibration is usually attached between the machineries and its base. General damper applied on the vessel is passive damper which is designed to attenuate specified frequency signals, i.e, high frequency vibration signals. But it is hard to anticipate its performance for low frequency signals. In this research, active vibration isolator using VCM is developed to suppress wide band vibration signals. Routh-Huritz's stable condition, ultimate sensitivity method and parameter tuning are applied to derive PID parameters and 2 and 4 phase choppers are also adapted to drive VCM. Simulation and experiments are executed to confirm the effectiveness of the proposed control schemes.

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.