• Title/Summary/Keyword: Motor Loading

Search Result 181, Processing Time 0.026 seconds

Comparison of Traction Motor design and characteristics for battery driven hybrid tram (무가선 트램용 추진 전동기 설계 및 특성 비교)

  • Ham, Sang-Hwan;Kim, Kwang-Soo;Kim, Mi-Jung;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

Optimal Design of Induction Motor Rotor Slot Shape for Electric Vehicle by Response Surface Method (반응표면법을 이용한 전기자동차 구동용 유도전동기의 회전자 슬롯형상 최적설계)

  • Jeon, Kyung-Won;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.58-66
    • /
    • 2011
  • In this paper, the starting torque and efficiency characteristics of the induction motor (IM) for the electric vehicle (EV) are improved by changing the slot shapes of squirrel cage. The initial model of the induction motor is designed by the loading distribution method (LDM), and then the rotor with squirrel cage of NEMA class A is selected to optimize the slot shape by response surface method(RSM). The design variables of rotor slot shape are obtained by the RSM. Starting torque and efficiency were calculated by the equivalent circuit method. As a result, starting torque and efficiency of the optimized model shows good performance through whole-speed range.

A Measuring Method for Positioning Characteristics Analysis of NC Machine Controller using Dynamometer (모터 동력계를 이용한 공작기계용 NC제어기 시스템의 위치제어 특성 분석을 위한 측정 연구)

  • Kim Hyung Gon;An Dong Youl;Lee Eung Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.770-776
    • /
    • 2005
  • The gains fur NC controller parameter are fixed when the controller is combined with a machine. However, the characteristics of controller could be changed as it has being used by the machine or other environmental conditions. Those result in that the tool positioning accuracy is influenced. The loading torque in servo motor influences on the tool positioning accuracy and it is controlled by the parameter gains. It is required to analyze the torque variation with angular positioning accuracy of the servo motor. This study focus on a measuring method and device for verifying angular positioning accuracy of NC servo motor. We used a high resolution An converter for acquiring analogue signal of rotary encoder in servo motor. The positional accuracy for a nominal tool path, which is generated by the combination of axial movements (X,Y,Z), is analyzed with the servo motor torque. The current variation signal is acquired at the power line using a hall sensor and converted to the loading torque of servo motor. The method of measurement and analysis proposed in this study will be used for determining the gains of parameter in NC controller. This gain tuning is also necessary when the controller is set up at a machine.

Effective Frequency of External Feedback for Increasing the Percentage of Body Weight Loading on the Affected Leg of Hemiplegic Patients (편마비환자의 환측하지 체중부하율 향상을 위한 효과적인 외적 되먹임 빈도)

  • Noh, Mi-He;Yi, Chung-Hwi;Cho, Sang-Hyun;Kim, Tae-Ue
    • Physical Therapy Korea
    • /
    • v.5 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In motor learning, the relative frequency of external feedback is the proportion of external feedback presentations divided by the total number of practice trials. In earlier studies, increasing the percentage of body weight loading on the affected leg of hemiplegic patients, external feedback was continuously produced as the patient attempted to perform a movement. This feedback was produced to enhance the learning effect. However, recent studies in nondisabled populations have suggested that compared with 100% relative frequency conditions, practice with lower relative frequencies is more effective. My study compared the effect of 100% relative frequency conditions with 67% relative frequency conditions to determine what effect they exerted on motor learning for increasing the percentage of body weight loading on the affected lower limbs of patients with hemiplegia. Twenty-four hemiplegic patients were randomly assigned to one of two experimental groups. Each group practiced weight transfer motor learning on a machine. During practice, visual feedback was offered to all subjects. The experiment was carried out with full visual feedback for patients in group one but only 67% visual feedback for patients in group two. The percentage of loading on the affected leg was recorded four times: before learning (baseline value), immediately after learning, 30 minutes after learning, 24 hours after learning. The results were as follows: 1. In the 100% visual feedback group, the percentage of loading on the affected leg increased significantly in all three testing modes over the baseline value. 2. In the 67% visual feedback group, the percentage of loading on the affected leg increased significantly in all three measurements. 3. Immediately after learning, the learning effect was not significantly different between the two groups, but was significantly greater after both the 30 minutes delay and the 24 hours period. These results suggest that the 33% reduction in the provision of visual feedback may enhance the learning effect of increasing the percentage of body weight loading on the affected leg in patients with hemiplegia.

  • PDF

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

A Method of ROL Improvement for the Motor Operated Gate Valve Operated in the High Differential Pressure Condition (고차압에서 운전되는 모터구동 게이트밸브의 부하율 향상 방안)

  • Kim, D.W.;Yoo, S.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.16-22
    • /
    • 2005
  • This paper presents the method of ROL(Rate Of Loading) improvement for the Motor Operated Gate Valve operated in high differential pressure condition. ROL is one of the most important evaluation parameters for the valve ability. It is close to correlation in stem factor (SF) and appears different value by the differential pressure of fluid. ROL and SF are analyzed by the static test and dynamic test. The obtained result show that the modification of stem factor is very important factor for the ROL improvement. In order to obtain the same value of SF between static and dynamic test, stem and stem nut should be combined appropriately by the repetition test.

Improvement of LMCTS Position Accuracy using DR-FNN Controller

  • Lee, Jin Woo;Suh, Jin Ho;Lee, Young Jin;Lee, Kwon Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.223-230
    • /
    • 2004
  • In this paper, we will introduce a control strategy based on the permanent magnet linear synchronous motor (PMLSM) container transfer system using soft-computing algorithm. Linear motor-based container transport system (LMCTS) is horizontal transfer system for the yard automation, which has been proposed to take the place of automated guided vehicle in the maritime container terminal. LMCTS is considered as that the system is changed its model suddenly and variously by loading and unloading container. The proposed control system is consisted of two DR-FNNs that act the role of controller and system emulator. Consequently, the system had the predictable structure and an ability to adapt for a huge variation of rolling friction, detent force, and sudden changes of its weight by loading and unloading.

A Method of ROL Improvement for the Motor Operated Gate Valve Operating in the High Differential Pressure Condition (고차압에서 운전되는 모터구동게이트밸브의 부하율 향상 방안)

  • Kim, D.W.;Park, S.G.;Hong, S.Y.;Yooh, S.Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.562-567
    • /
    • 2003
  • This paper presents the method of Rate of Loading(ROL) improvement for the Motor Operated Gate Valve operating in high differential pressure condition. The character of ROL and Stem Factor is analyzed. Static test and dynamic test were performed and acquired the diagnosis signal for the valve closing stroke. The result of this study is the modification of stem factor is very important factor for the ROL improvement. In order to obtain the same value of dynamic test thread friction coefficient stem and stem nut should be combined appropriately.

  • PDF

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part I ; A Driving Motor-Bull Gear Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part I : 구동 모터-불기어 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • A rotordynamic analysis is performed with a motor-bull gear rotor system supported on two partial bearings, which is intended to drive a high-speed turbo-chiller compressor impeller shaft through its built-in pinion gear. The motor-bull gear rotor system has a rated speed of 3,600 rpm, and is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support partial bearings are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the motor-bull gear rotor-bearing system is carried out to evaluate its whirl natural frequencies and mode shapes and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regradless of operating conditions, i.e., loads and operating speeds.

  • PDF