• 제목/요약/키워드: Motor Failure

검색결과 328건 처리시간 0.026초

유도전동기 베어링의 원거리 실시간 결함진단시스템 개발 (Web-based Real Time Failure Diagnosis System Development for Induction Motor Bearing)

  • 권오헌;이승현
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.1-8
    • /
    • 2005
  • The industrial induction motor is widely used in the rotating electrical machine for the transmission of power. It is very reliable equipment, but it could lead to the loss of production and lift when failure occurs. Therefore, the failure data is acquired and analyzed by attaching an exclusive instrument to existing induction motor. However, these instruments could lead to side effects, increasing the production costs, because they are very expensive. The purpose of this study is the development of an induction motor bearing failure diagnosis system constructed using LabVIEW which can be supplied the kernelled function, process monitoring and current signature analysis. In addition, the availability and reasonability of the constructed system was examined for an induction motor with failure defects in outer raceway and ball bearing. From the results, it shows that failure diagnosis system constructed is useful for real-time monitoring with detection of bearing defects over the web.

CVVL BLDC 모터의 열피로 가속시험을 통한 수명보증시험 설계 (A Study on Reliability Compliance Test based on Thermal Fatigue Accelerated Test for CVVL BLDC Motor)

  • 이상훈;박상욱;김민근;선한걸;홍성렬;한만승
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권4호
    • /
    • pp.241-247
    • /
    • 2015
  • Purpose : The demand for higher fuel economy vehicles has helped develop fuel-efficient vehicles such as a CVVL called continuous variable valve lift. Existing CVVL has been applying DC type motor to control intake valve, but recently some car parts manufacturers have been developing a BLDC type CVVL motor for improvements of endurance performance. The purpose of this study is to find the potential failure mechanism of the CVVL BLDC moto in early stage of development based on the design properties and design the accelerated life test model. Methods : CVVL BLDC is consist of brushs, coil, magnetic, PCB, bearing and so on. Each component has a latent failure mechanism caused by temperature, humidity, vibration. By analysis result of the failure mechanism, thermal fatigue is the most important factor of a durability of CVVL BLDC motor. So, we designed a new accelerated life test model for guarantee of the CVVL BLDC motor. Results : A crack occurred on via hole in test using the conditions we designed, so we did change the design to avoid this failure. The via hole dimension is changed a little larger, as a result we achieve improvements in reliability of the CVVL BLDC motor. By applying various kinds and extreme level of stresses, we can find the operating limits of products. Conclusion : In thesis, We analyzed the failure mechanism of CVVL BLDC and designed an accelerated life test method to give a guarantee for reliability. Based on the test results, we could improve the reliability of developments by change of design.

상변위에 의한 동기전동기의 과도안정도 개선 (Improvement of Synchronous Motor Transient Stability by Phase Slipping)

  • 한송엽
    • 전기의세계
    • /
    • 제21권2호
    • /
    • pp.20-24
    • /
    • 1972
  • The transient stability of the synchronous motor is generally improved by damper winding or flywheel. However the synchronous motor at full load will be pulled out from normal operation state when the period of power failure exceeds approximately ten cycle per second. This paper studies the method of improving the stability of synchronous motor by equipping the phase slipping switch between the motor and power source. This paper shows the motor does not pull out, which results from the decrease of power angle to about 30 electrical degrees by means of the switch even when the relatively long period of power failure brings the power angle to some 150 electrical degrees.

  • PDF

가속수명시험에 의한 고속팬용 밀폐구조형 BLDC 모터의 열신뢰성 분석 (Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test)

  • 이태구;문종선;유호선;이재헌
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this paper, thermal reliability of a closed type BLDC (Brushless DC) motor for high speed axial fan was analyzed by the accelerated life test. The closed type BLDC (Model No. MB1-8855-J01) motor was controlled by PCB module, which was composed of various electrical components. The failure of the closed type BLDC motor happened in PCB module due to high temperature. Failure mechanism of the closed type BLDC motor appears to be electrolyte dry out of capacitor. The accelerate life test was performed in temperature stress of $85^{\circ}C\;and\;105^{\circ}C$, respectively The failure data from the accelerated life test were analyzed and the life in each stress level was estimated with 960h and 261 h. At last, both life expression according to operating temperature of PCB module and life of the closed type BLBC motor in normal condition $(50^{\circ}C)$ were suggested.

머신러닝을 이용한 스타트 모터의 고장예지 (Failure Prognostics of Start Motor Based on Machine Learning)

  • 고도현;최욱현;최성대;허장욱
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.85-91
    • /
    • 2021
  • In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.

산업용 청소기 모터의 가속수명시험 (Accelerated Life Test of Industrial Cleaner Motor)

  • 엄학용;이기천;장무성;박종원;이용범
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권3호
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: In this study, the life of the motor is investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Methods: The accelerating stress factor of the accelerated life test is a voltage, which can increase the number of revolutions of the motor to accelerate the brush wear due to the friction between the brush and the commutator. Also, the accelerating stress level was determined after determining the maximum allowable level of the voltage through the preliminary test. Results: The motor failure time at each accelerating stress level was predicted by regression analysis with brush wear length as performance degradation data. The main failure mode, which is brush wear, of the motor was reproduced by this test. The shape parameter of the Weibull distribution was confirmed to be the same statistically at all accelerating stress levels by the likelihood ratio test. Conclusion: The life of the motor was investigated by performing the accelerated life test with the brush wear of the industrial cleaner motor as the main failure mode. Through the accelerating test method of the cleaner motor, various life expectancy and life expectancy of the acceleration factor are predicted.

소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류 (Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus)

  • 유승열;장준교;전민성;이재철;강동훈;이순섭
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

대형 동기 전동기 기동실패방지를 위한 여자기회로 과도현상 해석 (Excessive Condition Interpretation of a Exciter Circuit to Prevent Starting Failure of Large Synchronous Motor)

  • 박진훈;조내수;권우현;임성훈;윤경섭;김우현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.739-740
    • /
    • 2006
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, the large synchronous motor is not a self-starting motor. The rotor is heavy and, from a dead stop, it is impossible to bring the rotor into magnetic lock with the rotating magnetic field for this reason, all synchronous motor have some kinds of starting device. A simple starter is another motor which brings the rotor up to approximately 96 percent of it synchronous speed. The starting motor is disconnected and the rotor locks in step with the rotating field. The more commony used starting method is to have the rotor to include a squirrel cage indution winding. This indution winding brings the rotor almost to synchronous speed as an induction motor. So, this paper describes excessive condition interpretation of a exciter circuit to prevent starting failure of large synchronous motor. the large synchronous motor needs safety of it in accordance with operating frequent start and stop. the operating Problem point of synchronous motor appears potential element damage of Exciter circuit because synchronous motor is caused synchronous separation. hence we eliminate it and improve starting toque.

  • PDF

청소기모터의 가속수명시험설계 (Accelerated Life Test Design for Vacuum Cleaner Motors)

  • 이기화;윤원영
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2009
  • In this paper, an accelerated life test procedure for a vacuum cleaner motor is proposed. We investigate the failure mechanism of the motor and select some accelerating factors and determine the orifice size as a key accelerating factor. Three stress levels of orifice size are tested and the failure data with censored data are analyzed. The modified accelerating test will reduce the test time in design phase by using the accelerating factor.

  • PDF

하이브리드 로켓 모터의 신뢰성 분석을 위한 FMEA 및 FTA (FMEA and FTA for Reliability Analysis of Hybrid Rocket Motor)

  • 문근환;김동성;최주호;김진곤
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.27-33
    • /
    • 2013
  • In this study, the FMEA and FTA for reliability analysis of hybrid rocket motor are performed, that was designed in the Hybrid Rocket Propulsion Laboratory of Korea Aerospace University. In order to carry out these analyses the structure of the hybrid rocket motor is hierarchically divided into 36 parts down to the component level and FMEA is carried out with 72 failure modes. Reliability is assessed based on the FMEA, and the results are used in the FTA to evaluate the overall system reliability. In the FMEA, the relationship between the cause and failure modes, effects and their risk priorities are evaluated qualitatively. 27 failure modes are chosen as those with the critical severity that should be improved with priority. As a result of the FMEA / FTA study, a series of design or material changes are made for the improvement of reliability.