• Title/Summary/Keyword: Motor Drives

Search Result 843, Processing Time 0.027 seconds

Speed Ripple Based Mechanical Angle Estimation Scheme for Smooth Stop Control of Reciprocating Compressor (왕복동 압축기의 부드러운 정지 제어를 위한 속도 맥동 기반의 기계 각 추정 방식)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.298-301
    • /
    • 2021
  • A mechanical angle estimator is presented in this study to achieve the sensorless control of permanent magnet synchronous motor (PMSM) used in driving a reciprocating compressor. Braking the PMSM at a specific mechanical angular position is critical for the silent stoppage of the reciprocating compressor. The performance of conventional mechanical angle observers used in reciprocating compressor drives can be seriously affected according to gains of the speed controller because such observers rely on the magnitude of current ripples. A speed ripple-based mechanical angle estimator is proposed to solve this problem. Experimental results showed the effectiveness of the proposed method.

A study on the Beehive Door Opening and Closing System using a Hornet Sound Analysis

  • Kim, Joon Ho;Han, Wook;Chung, Wonki
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.393-396
    • /
    • 2022
  • Recently, rapid climate change has had a significant impact on the ecosystem of honeybees. In addition, the problem of Vespa Hornets invasion of colonies has a fatal impact on the bee ecosystem, independent of climate change. Especially in late summer. This study relates to a method for preventing Vespa Hornets attack. In this study, we developed a Vespa Hornets sound detection device was developed by collecting and analyzing the sound of a Vespa Hornets and applying IoT technology. The developed device detects the sound of a Vespa Hornets when Vespa Hornets appears around the hive of the bees and sends a signal to automatically close the door of the beehive. The device that receives the signal drives the motor that controls the honeycomb door to close the beehive door. The Vespa Hornets sound detection device operates until no Vespa Hornets sound is detected. The system developed by us is expected to be installed in the beehives of actual beekeeping farms to dramatically reduce the damage caused by by Vespa Hornets.

Closed Type Initial Starting Algorithm for PMSM Sensorless Control Using Integrated Speed Angle (폐루프 방식의 속도 적분각을 이용한 PMSM 센서리스 초기기동 알고리즘)

  • Park, Seong-Myeong;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • The cold staring issue of permanent magnet synchronous motors (PMSM) is a chronic problem in the field of PMSM sensorless drives. A traditional starting method, called the I-F method, is widely adopted because of its simple structure. However, when using this method, the pre-defined magnitude and frequency of the starting current should be changed according to the condition of the load and machine inertia. In this paper, a smart and simple algorithm for the cold starting of PMSM is proposed. In the proposed method, an integrated control angle from the estimated electrical rotor speed is used for vector control such as the indirect vector control of the induction machine. Thus, very stable cold starting is performed regardless of the machine load condition or inertia changing.

A study on the Development of Micro Hole Drilling Machine and its Mechanism (미소경 드릴링 머신의 개발과 절삭현상의 연구)

  • Paik, In-Hwan;Chung, Woo-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM 드라이브의 효율 최적화 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.98-106
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the cower and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and f-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

Analysis and Compensation of Current Measurement Error in Digitally Controlled AC Drives (디지털 제어 교류 전동기 구동시스템의 전류 측정 오차 해석 및 보상)

  • 송승호;최종우;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.462-473
    • /
    • 1999
  • This paper addresses the current measurement issue of all digital field oriented control of ac motors. The p paper focuses on the effect of low-pass filter and also on the sampling of the fundamental component of the m motor current. The low-pass filter, which suppresses the switching noise of the motor current, introduces v variable phase delay according to the current ripple frequency. It is shown that the current sampling error c consists of the fundamental component and high frL'quency ripple components. In this paper, the dependency of t this current sampling e$\pi$or on the reference voltage vector is investigated analytically and a sampling technique i is proposed to minimize the error. The work is based on the three phase symmetry pulse width modulation l inverter driving an induction machine. With this technique, the bandwidth of current regulator can be extended t to the limit given by the switching frequency of the inverter and more precise torque regulation is possible.

  • PDF

Cost-effective Design of an Inverter Output Reactor in ASD application (전동기 과전압 억제용 OUTPUT REACTOR의 최적 설계)

  • 김한종;이근호;장철호;이제필
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.483-490
    • /
    • 1999
  • In this paper, the cost-effective design of output reactor which is USCD to suppress the over-voltage at the m motor terminal in the Adjustable Speed Drives(ASD) application is proposed. In the elevator drive svstem. the R IXlwer cable length is relatively shorter than other ASD applications and then the over voltage at the motor terminal depends on the frequency characteristics of the output reactor at the over voltage operating frequency. The over-voltage suppression mechanism of output reactor in ASD application is analyzed and the dominant parameters of output reactor for the over-voltage supression are extracted. Using these as the design values and considering the high frequency characteristics of iron core in the reactor. a new c cost-effective structure of output reactor is proposed. Experimental results of the conventional reactor and the p proposed reactor with a l5kW induction motor are given to verify the propoSLD scheme.

  • PDF

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Chung, Dong-Hwa;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the coner and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.