• Title/Summary/Keyword: Motor Control Center

Search Result 522, Processing Time 0.026 seconds

Real-time Body Surface Motion Tracking using the Couch Based Computer-controlled Motion Phantom (CBMP) and Ultrasonic Sensor: A Feasibility Study (CBMP (Couch Based Computer-Controlled Motion Phantom)와 초음파센서에 기반한 실시간 체표면 추적 시스템 개발: 타당성 연구)

  • Lee, Suk;Yang, Dae-Sik;Park, Young-Je;Shin, Dong-Ho;Huh, Hyun-Do;Lee, Sang-Hoon;Cho, Sam-Ju;Lim, Sang-Wook;Jang, Ji-Sun;Cho, Kwang-Hwan;Shin, Hun-Joo;Kim, Chul-Yong
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • Respiration sating radiotherapy technique developed In consideration of the movement of body surface and Internal organs during respiration, is categorized into the method of analyzing the respiratory volume for data processing and that of keeping track of fiducial landmark or dermatologic markers based on radiography. However, since these methods require high-priced equipments for treatment and are used for the specific radiotherapy. Therefore, we should develop new essential method whilst ruling out the possible problems. This study alms to obtain body surface motion by using the couch based computer-controlled motion phantom (CBMP) and US sensor, and to develop respiration gating techniques that can adjust patients' beds by using opposite values of the data obtained. The CBMP made to measure body surface motion is composed of a BS II microprocessor, sensor, host computer and stopping motor etc. And the program to control and operate It was developed. After the CBMP was adjusted by entering random movement data, and the phantom movements were acquired using the sensors, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using a rabbit, the real-time respiration gating techniques were drawn by operating the phantom with the opposite values of the data. The result of analysing the acquisition-correction delay time for the data value shows that the data value coincided within 1% and that the acquistition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. And the movement was the maximum movement was 6 mm In Z direction, In which the respiratory cycle was 2.9 seconds. This study successfully confirms the clinical application possibility of respiration gating techniques by using a CBWP and sensor.

  • PDF

Comparison study of dermal cell toxicity and zebrafish brain toxicity by humidifier sterilizer chemicals (PHMG, PGH, CMIT/MIT) (가습기 살균제 성분(PHMG, PGH, CMIT/MIT)의 사람 피부세포 독성 및 제브라피쉬 뇌신경 독성 비교 연구)

  • Cho, Kyung-Hyun;Kim, Jae-Ryong
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.271-277
    • /
    • 2020
  • Toxicities to many organs caused by humidifier disinfectants have been reported. Recently, humidifier disinfectants have been reported to cause cardiovascular, embryonic, and hepatic toxicities. This study was designed to investigate the toxic mechanism of humidifier disinfectants and compare toxicity in a cellular model and a zebrafish animal model. Because brain toxicity and skin toxicity have been less studied than other organs, we evaluated toxicity in a human dermal cell line and zebrafish under various concentrations of humidifier disinfectants that included polyhexamethyleneguanidine phosphate (PHMG), oligo-[2-(2-ethoxy)-ethoxyethyl-guanidinium-chloride] (PGH) and methylchloroisothiazolinone/methylisothiazolinone (CMIT/MIT). A human dermal fibroblast cell line was treated with disinfectants (0, 2, 4, 6, 8, and 16 mg L-1) to compare their cytotoxicity. The fewest PHMG-treated cells survived (up to 33%), while 49% and 40% of the PGH- and CMIT/MIT-treated cells, respectively, survived. The quantification of oxidized species in the media revealed that the PHMG-treated cells had the highest MDA content of around 28 nM, while the PGH- and CMIT/MIT-treated cells had 13 and 21 nM MDA, respectively. As for brain toxicity, treatment of the zebrafish tank water with CMIT/MIT (final 40 mg L-1) for 30 min resulted in a 17-fold higher production of reactive oxygen species (ROS) than in the control. Treatment with PGH or PHMG (final 40 mg L-1) resulted in 15- and 11-fold higher production, respectively. The humidifier disinfectants (PHMG, PGH, and CMIT/MIT) showed severe dermal cell toxicity and brain toxicity. These toxicities may be relevant factors in understanding why some children have language disorders, motor delays, and developmental delays from exposure to humidifier disinfectants.