• Title/Summary/Keyword: Motor Control Center

Search Result 522, Processing Time 0.055 seconds

Design and Implementation of Digital Motor Control Center Including Load Control Function (부하제어 기능을 갖는 디지털형 전동기제어반의 설계 및 구현)

  • 우천희;강신준;이덕규;구영모;김학배;이성환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.868-875
    • /
    • 1999
  • In this paper, digital motor control center using protection relay is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which have various load environments and capacities in power systems. Digital motor control center is employed by power supervisory control systems without separate remote terminal unit and transducers adding communicational ability. Also we develope a maximum demand controller to control the load effectively at peak status and a power factor controller to minimize real power losses and improve the power factor. Therefore, when using the developed controller, real time computation is possible by loading DSP in hardware and applying real-time kernel which can convert each algorithm to task module.

  • PDF

Full digital control of permanent magnet AC servo motors

  • Lee, Jin-Won;Kim, Dong-Il;Jin, Sang-Hyun;Oh, In-Hwan;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.218-223
    • /
    • 1993
  • In this paper, we present a full digital control scheme which controls currents and speed of the permanent magnet AC servo motor with large range of bandwidth and high performance. The current equations of the permanent magnet AC servo motor are linearized by feedback linearization technique. Both acceleration feedforward terms and IP controllers, whose gains are functions of motor speed, are used in order to control motor currents. In addition the phase delays in current control loops are compensated by placing phase lead-lag compensators after current commands, which make it possible to avoid high gains in the current controllers. Unity power factor can be achieved by the proposed current controller. Pulsewidth modulation is performed by way of the well-known comparison with a triangular carrier signals. The velocity controller is designed on the basis of the linearized model of the permanent magnet AC servo motor by the proposed current controller. The performance of the entire control system is analyzed in the presence of uncertainty in the motor parameters. The proposed control scheme is implemented using the digital signal processor-based controller composed of an Analog Device ADSP 2111 and a NEC78310. The pulsewidth modulation (PWM) signals are generated through a custom IC, SAMSUNG-PWM1, which has the outputs of current controllers as input. The experimental results show that the permanent magnet AC servo motor can be always driven with high dynamic performance by the proposed full digital control scheme of motor speed and motor current.

  • PDF

Development of a Digital Motor Control Center (디지틀형 MOTOR CONTROL CENTER 개발)

  • Byun, Young-Bok;Joe, Kee-Yeon;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.563-566
    • /
    • 1989
  • Drive malfunction take many forms and every possible one must be protected against. Until recently a separate analog device was needed for each type of malfunction. In this approach to simplified, more reliable motor-circuit protection and control, a microprocessor's digital controller for motor control center simultaneously examine most of the possible sources of circuit trouble and has more efficent functions (sequence control,display) than the conventional motor control center. The result of standard surge tests provided a realistic evaluation of the surge withstand capability of equipment.

  • PDF

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

PDFF Controller Design by CDM for Position Control of Traveling-Wave Ultrasonic Motor

  • Nundrakwang, S.;Isarakorn, D.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1847-1852
    • /
    • 2003
  • Ultrasonic motors have many excellent performances. A variety of ultrasonic motors has been developed and used as an actuator in motion control systems. However, this motor has nonlinear characteristics. Therefore, it is difficult to achieve the precise position control system incorporating with the ultrasonic motor. This paper describes a position control scheme for traveling-wave type ultrasonic motor using a pseudo-derivative control with feedforward gains (PDFF) controller designed by the coefficient diagram method (CDM). The PDFF control system satisfies both the tracking and regulation performances, which are the most important for the precise position control system. The CDM is shown to be an efficient and simple method to design the parameters of PDFF controller. The effectiveness of the proposed control system is demonstrated by experiments.

  • PDF

A Torque Angle Control of Permanent Magnet Synchronous Motors (영구자석 동기 전동기의 토오크 각 제어)

  • Choi, U.D.;Jung, M.K.;Lee, H.S.;Kim, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.336-339
    • /
    • 1990
  • The permanent magnet synchronous motor windings are energized by sinusoidal excitation current. The frequency of the winding excitation current is synchronous with motor movement and the phase is a function of the motor position with respect to the stator. The total operational speed range of the system is substantially incresed by controlling the phase of the excitation currents at a function of the desired speed. This becomes the torque angle between stator rotating field and motor position. In this paper, torque angle control method is described for surface permanent magnet synchronous motor (SPMSM). The control circuit for realizing control method is investigated and the system test is carried out.

  • PDF

Development of Current-based Compact Digital Protective Relay for Induction Motor Protection (중용량 전동기보호를 위한 전류형 디지털 보호계전기 개발)

  • Jung, Jong-Jin;Kim, Joong-Pyo;Shin, Jong-Han;Park, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.140-142
    • /
    • 2005
  • This paper describes the current- based compact digital motor protective relay for low and high voltage induction motors, which are widely used in industrial and commercial power systems. The existing protective relays for motor protection had only overload, short circuit, reverse phase, open circuit and grounding protective elements, and measurement, start/stop control function. But in present day, for automation system, various functions are required, especially motor management and sequence control function and more. To meet these requirements, we developed an economic current-based compact digital motor protective relay which had various function to control, manage and monitor the induction motor.

  • PDF

DC Motor Drive with Circuit Balancing Technique to Reduce Common Mode Conducted Noise

  • Jintanamaneerat, Jintanai;Srisawang, Arnon;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1881-1884
    • /
    • 2003
  • In some requirements of dc motor drive circuit applications are high quality output with generation of low internal conducted EMI. However the conventional dc motor drive circuits have been usually using unbalanced circuit which generates the high conducted EMI to the frame ground. This paper presents a balanced dc motor drive circuit which is effective way to reduce the common-mode noise. The circuit balancing is to make the noise pick up or occurring in both conductor lines, signal path and return path is equal in amplitude and opposite phase so that it will cancel out in the frame ground. The common-mode conducted noise reduction of this proposed dc motor drive is confirmed by experimental results.

  • PDF

Digital Electronic Control Center for Low Voltage Motors (저압모터용 디지털 전자 배전반 개발)

  • Kim, Seong-Ryong;Kim, Sung-Ho;Koh, Kang-Hoon;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.463-468
    • /
    • 2004
  • The digital motor protection, measuring and control equipment, as called "The digital motor control equipment", for applying to single/three phase motors designed an integrated one unit and manufactured a compact size which will be installed on the motor control center. It performs serveral protection functions and motor starting function, and measures and indicates a serveral measurement. This paper proposes the design concept and functionality of new digital motor control equipment to improve control performance and integrate several equipments for the control and protection of the motor.

  • PDF

Microstep Stepper Motor Control Based on FPGA Hardware Implementation

  • Chivapreecha, Sorawat;Dejhan, Kobchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.93-97
    • /
    • 2005
  • This paper proposes a design of stepper motor control in microstep driven mode using FPGA (Field Programmable Gate Array) for hardware implementation. The methods to drive stepper motor in microstep excitation mode are to control of the controlling currents in each phase windings of stepper motor with reference signals. These reference signals are used for controlling the current levels, the required variation of current levels with rotor position can be obtained from the ideal linear or sinusoidal approximations to the static torque-displacement ($T-{\theta}$) characteristic curve. In addition, the hardware implementation of stepper motor controller can be designed uses VHDL (Very high speed integrated circuits Hardware Description Language) and synthesis using an Altera FPGA, FLEX10K family, EPF10K20RC240-4 device as target technology and use MAX+PlusII program for overall development. A multi-stack variable-reluctance stepper motor of Sanyo Denki is used in the experiments.

  • PDF