• Title/Summary/Keyword: Motor Bearing

Search Result 470, Processing Time 0.028 seconds

Numerical investigation of thermo-flow characteristics in BLDC motor (BLDC 모터 내 열.유동 해석)

  • Kim, Min-Soo;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2540-2545
    • /
    • 2007
  • A computational study of BLDC motor is presented to elucidate thermo-flow characteristics in winding and bearing with heat generation. Rotation of rotor and blades drives influx of ambient air into the rotor inlet and the inflow rates are predicted more at the front-side inlet than at the rear-side, which can be ascribed to the different pressure distribution. Recirculation zone appears in the tiny interfaces between windings, however, showing the enhanced cooling performance due to the higher velocity distribution near the rotor wall. In contrast, flow separation and incline angle of bearing groove, and relatively slower velocity distribution cause poor cooling performance and therefore the redesign of the bearing groove is significantly required.

  • PDF

Experimental study on the thermal charateristics according to the pre-load and cooling condition for the high speed spindle with grease lubrication (그리스윤활 고속주축의 예압과 냉각조건에 따른 열특성의 실험적 고찰)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.41-46
    • /
    • 2003
  • The important problem in high speed spindles is to reduce and minimize the thermal effect by motor and bail bearings. Thermal characteristics according to the bearing pre-load and cooling condition are studied for the test spindl with grease lubrication and high frequency motor. Bearing and motor we main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting pre-load and cooling temperature are very effective to minimize the thermal effect by motor an ball bearings.

  • PDF

A Design of Horizontal-Type 5DOF Magnetic Bearing System (수평형 5축 자기 베어링 시스템 설계)

  • Kim, Jong-Moon;Kang, Do-Hyun;Park, Min-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.732-734
    • /
    • 2003
  • In this paper, a design of horizontal-type 5DOF magnetic bearing is presented. To implement the non-contact bearing, an active magnetic bearing using electromagnet is used and finite element method(FEM) is chosen to design the bearing magnet. Two radial bearing and one thrust bearing is designed to implement 5DOF operation. And three-phase induction motor is used as a driving motor. The design method for the magnetic bearing system is described.

  • PDF

Vibration Control of Condensate Motors in Nuclear Powerplant By Bearing Redesign (베어링 재설계에 의한 원전 COP motor의 진동 제어)

  • Lim, Do-Hyeong;Kim, Won-Hyun;Lee, Jong-Moon;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the summary of control of abnormal vibration found in the COP motors of a nuclear power plant. All six identical units of COP pump-motor assemblies showed unstable vibration pattern of which one or two showed higher vibration enough to exceed the allowable level from the installation stage. Many trials of test, measurement, overhaul and replacement had been repeated to investigate and solve the problem but only to reach unsatisfactory settlement. Recently several times of site tests are made and followed by significant diagnostic actions in which the authors group participated. It was found that the coupled shafting system of motor and pump is in close resonance with the $1^{st}$ shaft rotating speed. Redesign of topside motor bearing clearance is made to increase bearing stiffness and hence to avoid the resonance which consequently led to reduce the troubled vibration to allowable and stable status.

  • PDF

Measurements and Predictions of Rotodynamic Performance of a Motor-Driven Small Turbocompressor Supported on Oil-Free Foil Bearings (무급유 포일 베어링으로 지지되는 소형 전동 압축기의 회전체동역학 성능 측정 및 예측)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho;Lee, Jong Sung;Kim, Tae Young
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • This study presents experimental measurements of the rotordynamic performance of a motor-driven small turbocompressor supported by gas beam foil journal bearings (GBFJBs) and compares the test results with the predictions of a computational model. The experiments confirmed that the rotational synchronous frequency component dominates the behavior of the overall rotor vibrations, whereas the nonsynchronous components are insignificant, indicating the rotor-bearing system remains stable up to 100 krpm. The undamped natural frequency and imbalanced response of the rotor-bearing system are predicted when integrating the finite element model of the rotor-bearing system with the predictions of the bearing dynamic coefficients. The results are in good agreement with the experimental results. In addition, base excitation test results show that the small turbocompressor can endure large external forces and demonstrate limited rotor amplitudes. A simple single degreeof-freedom rotor model using the nonlinear stiffness of the GBFJBs can effectively predict the test results.

Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant (발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석)

  • Bae, Yong-Chae;Lee, Hyun;Kim, Yeon-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors (고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정)

  • Jeong, Kwon Jong;Hwang, Sung Ho;Baek, Doo San;Kim, Tae Young;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.

Development of Friction Torque Measurement Device for Spherical Hydrostatic Bearing (구면 정압베어링의 마찰토크 측정장치 개발)

  • 함영복;최영호;박경민;윤소남;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-186
    • /
    • 2002
  • Lately, as going on increasing in the demand of high power density(power/weight), it is necessary for hydraulic axial piston pump/motor to operate more high pressure and speed. But in these condition, there are some trouble like as friction loss. To reduce this friction loss, hydrostatic bearing is used far axial piston pump/motor frequently. In general, it is difficult to measure accurate friction torque of spherical hydrostatic bearing in the use of the existing devices. So, we have developed the measurement device using the reaction torque sensor to obtain the pure friction torque, fitted in the casing. In this report, we intend to make an introduction about this measurement device for friction torque of the spherical wear part and clarify the effect of friction characteristics on supply pressure and rotational speed with three types of pocket size by using this measurement device.

  • PDF

Design and Operation Characteristics of A Two-Stage Compressor (이단 압축기의 동력학적 설계 및 운전 특성에 관한 연구)

  • Lee, Yong-Bok;Lee, Nam-Soo;Kim, Tae-Ho;Kim, Chang-Ho;Choi, Dong-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.469-474
    • /
    • 2001
  • The feasibility of a oil-free motor-driven two-stage centrifugal compressor supported by air bump bearings is investigated. This centrifugal compressor is driven by 75kW motor at an operating speed of 39,000RPM md a pressure ratio of the compressor is up to 4. The analysis is performed, based upon bearing equilibrium position, bearing stiffness, Campbell diagram, unbalance response and stability. It is demonstrated in this paper that air bump bearings can be adopted well to a oil-free motor-driven centrifugal compressor.

  • PDF