• Title/Summary/Keyword: Motion-sensing Interface

Search Result 27, Processing Time 0.032 seconds

Tracking and Interaction Based on Hybrid Sensing for Virtual Environments

  • Jo, Dongsik;Kim, Yongwan;Cho, Eunji;Kim, Daehwan;Kim, Ki-Hong;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.356-359
    • /
    • 2013
  • We present a method for tracking and interaction based on hybrid sensing for virtual environments. The proposed method is applied to motion tracking of whole areas, including the user's occlusion space, for a high-precision interaction. For real-time motion tracking surrounding a user, we estimate each joint position in the human body using a combination of a depth sensor and a wand-type physical user interface, which is necessary to convert gyroscope and acceleration values into positional data. Additionally, we construct virtual contents and evaluate the validity of results related to hybrid sensing-based whole-body tracking of human motion methods used to compensate for the occluded areas.

Comparison of an ultrasonic distance sensing system and a wire draw distance encoder in motion monitoring of coupled structures

  • Kuanga, K.S.C.;Hou, Xiaoyan
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.191-201
    • /
    • 2016
  • Coupled structures are widely seen in civil and mechanical engineering. In coupled structures, monitoring the translational motion of its key components is of great importance. For instance, some coupled arms are equipped with a hydraulic piston to provide the stiffness along the piston axial direction. The piston moves back and forth and a distance sensing system is necessary to make sure that the piston is within its stroke limit. The measured motion data also give us insight into how the coupled structure works and provides information for the design optimization. This paper develops two distance sensing systems for coupled structures. The first system measures distance with ultrasonic sensor. It consists of an ultrasonic sensing module, an Arduino interface board and a control computer. The system is then further upgraded to a three-sensor version, which can measure three different sets of distance data at the same time. The three modules are synchronized by the Arduino interface board as well as the self-developed software. Each ultrasonic sensor transmits high frequency ultrasonic waves from its transmitting unit and evaluates the echo received back by the receiving unit. From the measured time interval between sending the signal and receiving the echo, the distance to an object is determined. The second distance sensing system consists of a wire draw encoder, a data collection board and the control computer. Wire draw encoder is an electromechanical device to monitor linear motion by converting a central shaft rotation into electronic pulses of the encoder. Encoder can measure displacement, velocity and acceleration simultaneously and send the measured data to the control computer via the data acquisition board. From experimental results, it is concluded that both the ultrasonic and the wire draw encoder systems can obtain the linear motion of structures in real-time.

Development of the MVS (Muscle Volume Sensor) for Human-Machine Interface (인간-기계 인터페이스를 위한 근 부피 센서 개발)

  • Lim, Dong Hwan;Lee, Hee Don;Kim, Wan Soo;Han, Jung Soo;Han, Chang Soo;An, Jae Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.870-877
    • /
    • 2013
  • There has been much recent research interest in developing numerous kinds of human-machine interface. This field currently requires more accurate and reliable sensing systems to detect the intended human motion. Most conventional human-machine interface use electromyography (EMG) sensors to detect the intended motion. However, EMG sensors have a number of disadvantages and, as a consequence, the human-machine interface is difficult to use. This study describes a muscle volume sensor (MVS) that has been developed to measure variation in the outline of a muscle, for use as a human-machine interface. We developed an algorithm to calibrate the system, and the feasibility of using MVS for detecting muscular activity was demonstrated experimentally. We evaluated the performance of the MVS via isotonic contraction using the KIN-COM$^{(R)}$ equipment at torques of 5, 10, and 15 Nm.

A Multi-dimensional Structure for User Resistance with the Determinants of Innovative Product Use on Virtual Reality (가상현실 환경에서의 다차원적 혁신저항 구조와 혁신 제품 사용의 결정요소)

  • Park, Hyun-jung;Shin, Kyung-shik;Choi, Jaewon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.2
    • /
    • pp.97-119
    • /
    • 2016
  • Motion-sensing interface enhances the sense of reality of user experience in virtual reality context. This study analyzes the innovation resistance and adoption structure for Leap Motion, which provides a motion-sensing function, primarily considering the theory of perceived risk. Previous research regarding innovation resistance and adoption mainly addressed the resultant aspects of perceived risk, or the impact of perceived value on the adoption intention. This study synthetically reviews previous studies from a multi-dimensional view considering both resistance- and adoption-perspective. To do so, we identified important antecedents that affect perceived risk and value, and we analyzed the compound dynamics of perceived risk and value towards innovation resistance. As a result, we found that the antecedents included in the existent acceptance models from adoption-perspective can help reduce the level of perceived risk, and that higher perceived value leads to lower innovation resistance. Additionally, trialability can rather foster the perceived risk.

A Design and Implementation of Natural User Interface System Using Kinect (키넥트를 사용한 NUI 설계 및 구현)

  • Lee, Sae-Bom;Jung, Il-Hong
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.473-480
    • /
    • 2014
  • As the use of computer has been popularized these days, an active research is in progress to make much more convenient and natural interface compared to the existing user interfaces such as keyboard or mouse. For this reason, there is an increasing interest toward Microsoft's motion sensing module called Kinect, which can perform hand motions and speech recognition system in order to realize communication between people. Kinect uses its built-in sensor to recognize the main joint movements and depth of the body. It can also provide a simple speech recognition through the built-in microphone. In this paper, the goal is to use Kinect's depth value data, skeleton tracking and labeling algorithm to recognize information about the extraction and movement of hand, and replace the role of existing peripherals using a virtual mouse, a virtual keyboard, and a speech recognition.

An Empirical Evaluation of Stone-shaped Physiological Sensing Interface (돌 형태의 휴대용 생체신호 측정 인터페이스의 경험적인 평가 및 분석)

  • Choi, Ah-Young;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Recently researchers have studied mobile physiological sensing device. However, previous works focused on multiple and real time physiological sensing method, instead of aesthetic shape of sensing devices, sensing comfort during monitoring and sensing reliability against the hand motion artifact. In this work, we propose a stone shaped physiological sensing device to monitor the physiological status in a daily life which maximize the aesthetic feeling and sensing comfort and sensing reliability. We proposed stepwise user centered design process for user centric physiological sensing device and evaluated appropriate sensing positions against the hand motion artifacts and pressure from sensors. From the usability test and experiments, we verified the proposed sensing device provides the aesthetic appeals, sensing comfort and sensing reliability. We expect that this work can be applied in the various health care applications in near future.

  • PDF

Development of Motion Mechanisms for Health-Care Riding Robots (지능형 헬스케어 승마로봇의 모션 메카니즘 개발)

  • Kim, Jin-Soo;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1735-1736
    • /
    • 2008
  • In this research, a riding robot system named as "RideBot" is developed for health-care and entertainments. The developed riding robot can follow the intention of horseman and can simulate the motion of horse. The riding robot mechanisms are used for many functions of attitude detection, motion sensing, recognition, common interface and motion-generations. This riding robot can react on health conditions, bio-signals and intention informations of user. One of the objectives of this research is that the riding robot could catch user motion and operate spontaneous movements. In this paper, we develope the saddle mechanism which can generate 3 degrees-of-freedom riding motion based on the intention of horseman. Also, we develope reins and spur mechanism for the recognition of the horseman's intention estimation and the bio-signal monitoring system for the health care function of a horseman. In order to evaluate the performance of the riding robot system, we tested several riding motions including slow and normal step motion, left and right turn motion.

  • PDF

Motion Recognition of Smartphone using Sensor Data (센서 정보를 활용한 스마트폰 모션 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1437-1445
    • /
    • 2014
  • A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.

Sensing performance evaluation under various environment condition of stroke sensing cylinder using magnetic sensor (자기센서를 이용한 위치검출 실린더의 환경변화에 따른 성능평가)

  • 김성현;이민철;양순용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.636-639
    • /
    • 1996
  • We have developed a part of hydraulic stroke sensing cylinder using magnetic sensor that can detect each position under severe construction fields. In this paper, for evaluating the developed cylinder under various environment condition, thermal control systems and two hydraulic systems to be coupled consist of. The former is composed of an heater case, temperature sensor, and interface circuits which include SCR(silicon controlled rectifier) for the control of the voltage's phase. The latter is composed of an hydraulic cylinder for position control with solenoid valve (ON/OFF motion) and a load cylinder with proportional reducing valve. To obtain the various performance evaluation, it is carried out under high temperature condition in thermal system controlled by using Ziegler-Nichols PID tuning method and artificial disturbances such as impulse or constant force. The results show that the developed cylinder has good performance under the various environment condition.

  • PDF