• Title/Summary/Keyword: Motion tracking

Search Result 1,219, Processing Time 0.028 seconds

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Emergency Signal Detection based on Arm Gesture by Motion Vector Tracking in Face Area

  • Fayyaz, Rabia;Park, Dae Jun;Rhee, Eun Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents a method for detection of an emergency signal expressed by arm gestures based on motion segmentation and face area detection in the surveillance system. The important indicators of emergency can be arm gestures and voice. We define an emergency signal as the 'Help Me' arm gestures in a rectangle around the face. The 'Help Me' arm gestures are detected by tracking changes in the direction of the horizontal motion vectors of left and right arms. The experimental results show that the proposed method successfully detects 'Help Me' emergency signal for a single person and distinguishes it from other similar arm gestures such as hand waving for 'Bye' and stretching. The proposed method can be used effectively in situations where people can't speak, and there is a language or voice disability.

A Movement Tracking Model for Non-Face-to-Face Excercise Contents (비대면 운동 콘텐츠를 위한 움직임 추적 모델)

  • Chung, Daniel;Cho, Mingu;Ko, Ilju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.181-190
    • /
    • 2021
  • Sports activities conducted by multiple people are difficult to proceed in a situation where a widespread epidemic such as COVID-19 is spreading, and this causes a lack of physical activity in modern people. This problem can be overcome by using online exercise contents, but it is difficult to check detailed postures such as during face-to-face exercise. In this study, we present a model that detects posture and tracks movement using IT system for better non-face-to-face exercise content management. The proposed motion tracking model defines a body model with reference to motion analysis methods widely used in physical education and defines posture and movement accordingly. Using the proposed model, it is possible to recognize and analyze movements used in exercise, know the number of specific movements in the exercise program, and detect whether or not the exercise program is performed. In order to verify the validity of the proposed model, we implemented motion tracking and exercise program tracking programs using Azure Kinect DK, a markerless motion capture device. If the proposed motion tracking model is improved and the performance of the motion capture system is improved, more detailed motion analysis is possible and the number of types of motions can be increased.

An algorithm for Video Object Detection using Multiresolution Motion Estimation (다해상도 움직임 예측을 이용한 동영상 물체탐지 알고리즘)

  • 조철훈;박장한;이한우;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2003
  • This paper proposes an object detection algorithm using the Multiresolution Motion Estimation(MRME) in wavelet d야main. A existing motion estimation method has characteristics of motion estimation but it requires having computation. Motion estimation in higher resolution used the motion vector of the lower resolution with the MRME that has parent-child relationship on wavelet coefficients. This method reduces the search area of motion estimation in higher resolution and computational complexity. The computational complexity of the proposed method is about 40% of the existing method using 3-level Set Partitioning in Hierarchical Trees(SPIHT) wavelet transform. The experimental results with the proposed method showed about 11% decrease of Mean Absolute Difference(MAD) and gains able to precise tracking of object.

Real-Time Object Tracking and Segmentation Using Adaptive Color Snake Model

  • Seo Kap-Ho;Shin Jin-Ho;Kim Won;Lee Ju-Jang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks such as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, the development of new snake model called 'adaptive color snake model (ACSM)' for segmentation and tracking is introduced. The simple operation makes the algorithm runs in real-time. For robust tracking, the condensation algorithm was adopted to control the parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations and experiments.

Robust Visual Tracking for 3-D Moving Object using Kalman Filter (칼만필터를 이용한 3-D 이동물체의 강건한 시각추적)

  • 조지승;정병묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.

A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive (고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법)

  • Ryoo Jung Rae;Moon Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.

A Feature Tracking Algorithm Using Adaptive Weight Adjustment (적응적 가중치에 의한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.68-78
    • /
    • 1999
  • A new algorithm for tracking feature points in an image sequence is presented. Most existing feature tracking algorithms often produce false trajectories, because the matching measures do not precisely reflect motion characteristics. In this paper, three attributes including spatial coordinate, motion direction and motion magnitude are used to calculate the feature point correspondence. The trajectories of feature points are determined by calculation the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights of the attributes are updated reflecting the motion characteristics, so that the robust tracking of feature points is achieved. The proposed algorithm can find the trajectories correctly which has been shown by experimental results.

  • PDF

Human Face Tracking and Modeling using Active Appearance Model with Motion Estimation

  • Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2017
  • Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.