• Title/Summary/Keyword: Motion track system

Search Result 211, Processing Time 0.029 seconds

Study on Effects of Rail Pad Vertical Stiffness by Train/Track Interaction Analysis (차량/궤도 상호작용해석을 통한 레일패드강성 영향 분석)

  • Yang Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.800-805
    • /
    • 2004
  • In this paper, a numerical method for train/track/structure interaction analysis in frequency domain is developed. Track is modelled as continuous beams supported by elastomers. The motion of train is expressed by those of car body, bogies and unsprung masses supported by springs and dampers. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The Effects of rail pad stiffness on the behaviors of train and track are analyzed using the presented method.

  • PDF

Development of Evaluation Method of Vibration-Reduction Efficiency in Slab Track (슬래브궤도의 방진효율성 평가기법 개발)

  • 양신추;강윤석;김만철;이종득
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.463-470
    • /
    • 1999
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effect of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

Development of a Numerical Analysis Method of Train/Track Interaction for Evaluation of Dynamic Track Design Load (궤도 설계 동하중 산정을 위한 차량/궤도 상호작용 해석기법 개발)

  • 양신추
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1094-1099
    • /
    • 2002
  • In this paper, a numerical method for vehicle-track interaction analysis is developed to evaluate vertical dynamic force subjected to rail surface. A vehicle is modelled by lumped masses system and track by multi layered continuous beam system. The equation of motion of vehicle and track interaction system is derived by considering compatibility condition at the contact points between wheel and rail. The input vibration source is given by the empirical formula of power spectral density of track irregularity, which is suggested by FRA. Using this method, dynamic impact factors with the train speed are evaluated.

  • PDF

Dynamic Characteristics and Stability of an Infrared Search and Track (적외선 탐색 및 추적장비의 동적 특성 및 안정화)

  • Choi, Jong-Ho;Park, Yong-Chan;Lee, Joo-Hyoung;Choi, Young-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

Implementation of A 3-D Animation System Based on The MPEG-4 SNHC Standard (MPEG-4 SNHC 표준을 따르는 3차원 애니메이션 시스템의 구현)

  • 윤승욱;안정환;전정희;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.129-132
    • /
    • 2002
  • In this paper, we propose a 3-D animation system to track and analyze motion of the human object. The proposed system consists of two separate layers: motion analysis layer and 3-D model registration layer. Following the MPEG-4 SNHC standard, we generate object motion using body definition and animation parameters. In the implemented system, we acquire human motion data from a single camera and extract body definition parameters from arbitrary VRML human models.

  • PDF

Real-time Implementation of a DSP System for Moving Object Tracking Based on Motion Energy (움직임 에너지를 이용한 동적 물체 추적 시스템의 실시간 구현)

  • Ryu, Sung-Hee;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.365-368
    • /
    • 2001
  • This work describes a real-time method, based on motion energy detection, for detecting and tracking moving object in the consecutive image sequences. The motion of moving objects is detected by taking the difference of the two consecutive image frames. In addition an edge information of the current image is utilized in order to further increase the accuracy of detection. We can track the moving objects continuously by detecting the motion of objects from the sequence of image frames. A prototype system has been implemented using a TI TMS320C6201 EVM fixed-point DSP board, which can successfully track a moving human in real-time.

  • PDF

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.