• Title/Summary/Keyword: Motion reduction structure

Search Result 138, Processing Time 0.02 seconds

Effectiveness of Isolation-System on Reduction of Seismic Response of Primary and Secondary Structures (주구조물 및 부구조물에 대한 감진장치의 지진응답 감소 효율성)

  • Kim, Young Sang;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.9-21
    • /
    • 1992
  • The effectiveness of the isolation system installed at the base of the primary structure and at the support of the substructure mounted on the primary structure is evaluated for reducing of structural responses under different earthquakes in this paper. The structural responses are analyzed to identify its behavior due to the input motion characteristics such as various peak acceleration and frequency content. Three analytical models are used to evaluate the effectiveness of the isolation system in this study as follows: fixed-base primary structure with support-fixed substructure, base-isolated primary structure with support-fixed substructure, and fixed-base primary structure with support-isolated substruciure. A computer code (KBISAP) is used for numerical integration of equation of motion considering the interaction between the primary structure and the secondary structure. The matrix condensation technique and constant average acceleration method are utilized in this program. And also, the effective stiffness of the base-isolator on reducing the structural response are evaluated for various earthquakes through the relationship of the acceleration - displacement.

  • PDF

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Sloshing suppression by floating baffle

  • Kang, Hooi-Siang;Md Arif, Ummul Ghafir;Kim, Kyung-Sung;Kim, Moo-Hyun;Liu, Yu-Jie;Lee, Kee-Quen;Wu, Yun-Ta
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.409-422
    • /
    • 2019
  • Sloshing is a phenomenon which may lead to dynamic stability and damages on the local structure of the tank. Hence, several anti-sloshing devices are introduced in order to reduce the impact pressure and free surface elevation of liquid. A fixed baffle is the most prevailing anti-sloshing mechanism compared to the other methods. However, the additional of the baffle as the internal structure of the LNG tank can lead to frequent damages in long-term usage as this structure absorbs the sloshing loads and thus increases the maintenance cost and downtime. In this paper, a novel type of floating baffle is proposed to suppress the sloshing effect in LNG tank without the need for reconstructing the tank. The sloshing phenomenon in a membrane type LNG tank model was excited under sway motion with 30% and 50% filling condition in the model test. A regular motion by a linear actuator was applied to the tank model at different amplitudes and constant period at 1.1 seconds. Three pressure sensors were installed on the tank wall to measure the impact pressure, and a high-speed camera was utilized to record the sloshing motion. The floater baffle was modeled on the basis of uniform-discretization of domain and tested based on parametric variations. Data of pressure sensors were collected for cases without- and with-floating baffle. The results indicated successful reduction of surface run-up and impulsive pressure by using a floating baffle. The findings are expected to bring significant impacts towards safer sea transportation of LNG.

A Context-based Fast Encoding Quad Tree Plus Binary Tree (QTBT) Block Structure Partition

  • Marzuki, Ismail;Choi, Hansol;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.175-177
    • /
    • 2018
  • This paper proposes an algorithm to speed up block structure partition of quad tree plus binary tree (QTBT) in Joint Exploration Test Model (JEM) encoder. The proposed fast encoding of QTBT block partition employs three spatially neighbor coded blocks, such as left, top-left, and top of current block, to early terminate QTBT block structure pruning. The propose algorithm is organized based on statistical similarity of those spatially neighboring blocks, such as block depths and coded block types, which are coded with overlapped block motion compensation (OBMC) and adaptive multi transform (AMT). The experimental results demonstrate about 30% encoding time reduction with 1.3% BD-rate loss on average compared to the anchor JEM-7.1 software under random access configuration.

  • PDF

Advanced Fast Mode Decision Algorithm Applied to Inter Mode for H.264/AVC (H.264/AVC를 위해 inter mode에 적용된 향상된 고속 모드 결정 알고리즘)

  • Yang, Sang-Bong;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.20-22
    • /
    • 2007
  • The H.264/AVC standard developed by the joint Video Team (JVT) provides better coding efficiency than previous standards. The new emerging H.264/AVC employs variable block size motion estimation using multiple reference frame with 1/4-pel MV(Motion Vector) accuracy. These techniques are a important feature to accomplish higher coding efficiency. However, these techniques are increased overall computational complexity. To overcome this problem, this paper proposes advanced fast mode decision suited for variable block size by classifying inter mode based on Rate Distortion Optimization(RDO) technique. Proposed algorithm is going to use to implement H/W structure for fast mode decision. The experimental results shows that the proposed algorithm provides significant reduction computational complexity without any noticeable coding loss and additional computation. Entire computational complexity is decreased about 30%.

  • PDF

A Bilateral Filtering Based Ringing Elimination Approach for Motion-blurred Restoration Image

  • Wang, Weiqing;Wang, Weihua;Yin, Jiao
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.200-209
    • /
    • 2020
  • We describe an approach that uses a bilateral filter to reduce the ringing artifact in motion-blurred restoration image. It takes into account the specific physical structure of the ringing artifact combined with the properties of the human visual system. To properly reduce the ringing artifact, each of the adjacent pixels is limited in a straight line which has a given direction. To protect the edges and the texture regions of an image, our algorithm divides the image into texture regions and flat regions, and the artifact reduction algorithm is only applied to the flat region. Finally, we use 8 typical images and 5 objective quality evaluation indices to evaluate our algorithm. Experimental results show that our algorithm can obtain better results in subjective visual effect and in objective image quality evaluation.

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.

A Study on Grasping Control of Robotic Hand Fingers (로봇 핸드핑거의 파지제어에 관한 연구)

  • Shim, Byoung-Kyun;Jung, Yang-Guen;Park, In-Man;hwang, Won-Jun;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.141-145
    • /
    • 2013
  • This paper is the development of industrial robotic hand system and the design methods of industrial robot hand that can mimic human fingers motion. In order to overcome problems incurred during the reduction of the mobility, this study focuses on analyzing human hand structure and finger movements from an anatomical point of view. As a result, distinctive features that improve the discovered stability in constraints for range of motion in the fingers is reflected in this design concept. A 4-bar Linkage is used in robot finger structure. Lastly, there were experiments to inspect the developed robot hands performance. The developed robot hand has many potential applications and can be in many different fields.

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.