• Title/Summary/Keyword: Motion of the Moon

Search Result 846, Processing Time 0.028 seconds

EXPERIMENTAL DEMONSTRATION OF ADVANTAGE OF MOTION INDUCED SYNTHETIC APERTURE RADIOMETER

  • Park, Hyuk;Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Yu, Hwan-Wook;NamGoong, Up;Sim, Won-Seon;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.22-25
    • /
    • 2008
  • Aperture synthesis with platform motion has been presented as a useful tool to achieve the high spatial resolution imaging. Using a motion induced synthetic aperture radiometer (MISAR), a passive microwave image can be achieved with a small number of antennas. Moreover, the MISAR is capable of imaging better than the case without motion, using the same configuration of antenna array. With a platform motion, visibility can be sampled more efficiently, and as a result the imaging performance of the MISAR shows higher quality than the case without platform motion. In this paper, the advantage of MISAR is demonstrated experimentally. Using a laboratory model of inteferometric radiometer, the point source images are obtained under the condition with platform motion and without platform motion. In the experimental results, the point source response of the MISAR shows better quality of sidelobe level and beam efficiency than the case without platform motion.

  • PDF

Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage (6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.46-52
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion (수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션)

  • Kim Moon-Chan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.300-306
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of .perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

  • PDF

Characteristics of Perturbations in Recent Length of Day and Polar Motion

  • Na, Sung-Ho;Kwak, Younghee;Cho, Jung-Ho;Yoo, Sung-Moon;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Various features of the existing perturbations in the Earth's spin rotation are investigated for the recent and most reliable data by spectral analysis, filtering, and comparison with idealized model. First, theory of Earth's spin rotational perturbation is briefly re-derived in the Earth-fixed coordinate frame. By spectral windowings, different periodic components of the length of day perturbation are separated, and their characters and excitations are discussed. Different periodic components of polar motion are acquired similarly and described with further discussion of their excitations. Causes of the long time trends of both the length of day and polar motion are discussed. Three possible causes are considered for the newly discovered 490-day period component in the polar motion.

Modeling and Simulation of Human Knee Joint in Three Dimension By Using the Method of Optimal Triangular Patches (최단 거리 삼각형 패치 형성법을 이용한 무릎 관절의 3차원 형상 모델링과 시뮬레이션)

  • Moon, Byung-Young;Son, Kwon;Kim, Kwang-Hoon;Seo, Jung-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.205-212
    • /
    • 2003
  • Many people are exposed to accidents by vehicles or sports. The most frequent injuries by these accidents is concerned with a knee joint. The three-dimensional surface model of a knee is needed for dynamic analysis of knee motion and knee reconstruction. three-dimensional motion data of a knee joint were obtained using X-ray and precise magnetic sensors. The surface data of a femur and a tibia were obtained using cross-sectional pictures by CT. The three-dimensional surface models of a femur and a tibia were made by the method of optimal triangular patch. Using obtained motion data, we simulated the motion of three-dimensional knee joint model.

Motion Estimation and Compensation based on Advanced DCT (변환 영역에서 개선된 DCT를 기반으로 한 움직임 예측 및 보상)

  • Jang, Young;Cho, Hyo-Moon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.38-40
    • /
    • 2007
  • In this paper, we propose a novel architecture, which is based on DCT (Discrete Cosine Transform), for ME (Motion Estimation) and MC (Motion Compensation). The traditional algorithms of ME and MC based on DCT did not suffer the advantage of the coarseness of the 2-dimensional DCT (2-D DCT) coefficients to reduce the operational time. Therefore, we derive a recursion equation for transform-domain ME and MC and design the structure by using highly regular, parallel, and pipeline processing elements. The main difference with others is removing the IDCT block by using to transform domain. Therefore, the performance of our algorithm is more efficient in practical image processing such as DVR (Digital Video Recorder) system. We present the simulation result which is compare with the spatial domain methods. it shows reducing the calculation cost. compression ratio. and peak signal to noise ratio (PSNR).

  • PDF

Design and Evaluation of Motion-based Interface for Image Browsing in Mobile Devices (모바일 장치에서의 이미지 브라우징을 위한 동작 추적 기반 인터페이스의 설계 및 평가)

  • Yim, Sung-Hoon;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.40-44
    • /
    • 2009
  • In this paper, we evaluate the feasibility of a motion-based interaction for image browsing in the mobile device. We present the design of a motion-based interface and a navigation scheme. A designed interaction scheme was evaluated in a usability experiment alongside the conventional button-based interaction for image browsing. After enough training of user, the usability and the user task performance of the motion based interaction were significantly increased, approaching those of the button based interaction.

  • PDF