• Title/Summary/Keyword: Motion in Depth

Search Result 627, Processing Time 0.026 seconds

Real-Time Stereoscopic Image Conversion Using Motion Detection and Region Segmentation (움직임 검출과 영역 분할을 이용한 실시간 입체 영상 변환)

  • Kwon Byong-Heon;Seo Burm-suk
    • Journal of Digital Contents Society
    • /
    • v.6 no.3
    • /
    • pp.157-162
    • /
    • 2005
  • In this paper we propose real-time cocersion methods that can convert into stereoscopic image using depth map that is formed by motion detection extracted from 2-D moving image and region segmentation separated from image. Depth map which represents depth information of image and the proposed absolute parallax image are used as the measure of qualitative evaluation. We have compared depth information, parallax processing, and segmentation between objects with different depth for proposed and conventional method. As a result, we have confirmed the proposed method can offer realistic stereoscopic effect regardless of direction and velocity of moving object for a moving image.

  • PDF

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • v.36 no.4
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

Applying differential techniques for 2D/3D video conversion to the objects grouped by depth information (2D/3D 동영상 변환을 위한 그룹화된 객체별 깊이 정보의 차등 적용 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1302-1309
    • /
    • 2012
  • In this paper, we propose applying differential techniques for 2D/3D video conversion to the objects grouped by depth information. One of the problems converting 2D images to 3D images using the technique tracking the motion of pixels is that objects not moving between adjacent frames do not give any depth information. This problem can be solved by applying relative height cue only to the objects which have no moving information between frames, after the process of splitting the background and objects and extracting depth information using motion vectors between objects. Using this technique all the background and object can have their own depth information. This proposed method is used to generate depth map to generate 3D images using DIBR(Depth Image Based Rendering) and verified that the objects which have no movement between frames also had depth information.

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

Motion-Blurred Shadows Utilizing a Depth-Time Ranges Shadow Map

  • Hong, MinhPhuoc;Oh, Kyoungsu
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.877-891
    • /
    • 2018
  • In this paper, we propose a novel algorithm for rendering motion-blurred shadows utilizing a depth-time ranges shadow map. First, we render a scene from a light source to generate a shadow map. For each pixel in the shadow map, we store a list of depth-time ranges. Each range has two points defining a period where a particular geometry was visible to the light source and two distances from the light. Next, we render the scene from the camera to perform shadow tests. With the depths and times of each range, we can easily sample the shadow map at a particular receiver and time. Our algorithm runs entirely on GPUs and solves various problems encountered by previous approaches.

The effect of depth discontinuity on spreading of motion aftereffect to non-adapted area (비순응 영역으로의 운동 잔여효과의 번짐에 미치는 삼차원 깊이 불연속의 효과)

  • Kham, Kee-Taek
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.1-24
    • /
    • 2010
  • The stationary image appears to move after we view a moving stimulus for a long time. The motion aftereffect(MAE) can spread to an adjacent region if there is no contrast discontinuity between two regions. In this study, it is investigated whether a phenomenon of MAE spreading to an adjacent non adapting area is affected by the depth discontinuity defined by binocular disparity. In the first experiment a disparity defined slanted pattern was presented in an unadapted region, and in the second experiment, a disparity defined pattern with a different depth was presented on the fronto-parallel plane. Although MAE duration in the condition with slanted pattern was not different from that in the non-slanted pattern condition, MAE durations in the pattern presented on pronto-parallel plane was vividly reduced, but not completely disappeared. These results suggest that a phenomenon of MAE spreading might be affected by depth discontinuity, and could be occurred after binocular information converges.

  • PDF

Motion Analysis of an Underwater Vehicle Running near Wave Surface (파랑수면 근처에서 항주하는 수중운동체의 운동해석)

  • Yoon, Hyeon Kyu;Ann, Seong Phil;Jung, Chulmin;Kim, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.395-403
    • /
    • 2016
  • A cylinder-type underwater vehicle for military use that is running near the free surface at the final homing stage to hit a surface ship target is affected by wave force and moment. Since wave can affect an underwater vehicle running at the depth less than half of the modal wave length, it is important to confirm that the underwater vehicle can work well in such a situation. In this paper, wave force and moment per unit wave amplitude depending on wave frequency, wave direction, and vehicle's running depth were calculated by 3-Dimensional panel method, and the numerical results were modeled in external force terms of six degrees of freedom equations of motion. Motion simulation of the underwater vehicle running in various speed, depth, and sea state were performed.

Motion of a Cylindrical Object due to Seabed Soil Friction (해저면 토양마찰력에 의한 원통형 물체의 운동)

  • 최경식;강신영;곽한우
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.

Optimization of Groove Sizing in CMP using CFD (CFD를 이용한 CMP의 Groove Sizing 최적화)

  • Jang, Ji-Hwan;Lee, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1522-1527
    • /
    • 2004
  • In this paper, slurry fluid motion, abrasive particle motion, and effects of groove sizing on the pads are numerically investigated in the 2D geometry. Groove depth is optimized in order to maximized the abrasive effect. The simulation results are analyzed in terms of shear stress on pad, groove and wafer, streamline and velocity vector. The change of groove depth entails vortex pattern change, and consequently affects material removal rate. Numerical analysis is very helpful for disclosing polishing mechanism and local physics.

  • PDF