• Title/Summary/Keyword: Motion in Depth

Search Result 627, Processing Time 0.025 seconds

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

A Study on the Cyber motion sickness of VR Content -Focused on Content Environment- (VR 콘텐츠 사이버 멀미에 관한 연구 -콘텐츠 환경을 중심으로-)

  • Koo, Ja-yoon;Kim, Seung-In
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • This study is aimed at analyzing cyber motion sickness factors focus on virtual environment-based VR and real-world VR. First literature study of cyber motion sickness, 3D animations and documentaries were conducted. As a measurement tool for the degree of motion sickness, the symptom values were measured in a standardized SSQ (Simulator Sickness Questnire) questionnaire. Following the measurement, an in-depth interview was conducted based on the SSQ questionnaire. The results are as follows, First, actual environment based VR caused bigger cyber motion sickness, second, values of strong saturation of VR contents cause cyber motion sickness. This study is expected to be used as design guidelines for configuring VR early contents and to be used for cyber motion sickness research.

The effect of 3D surface configuration on color-motion misbinding (색채- 운동 오결합에서 삼차원 표면배열의 효과)

  • Kham, Kee-Taek
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.1
    • /
    • pp.25-45
    • /
    • 2010
  • If color and motion direction of random dots in the central region was combined in opposite fashions with those of random dots in the peripheral region, the color of dots with a particular direction in the peripheral region is perceived as that of dots in the central region, known as color-motion mis-binding phenomenon. In the present study, it is investigated whether mis-binding would happen even if the central and peripheral region do not have a common three-dimensional surface. In the first experiment, the dots in the peripheral were presented in a different depth plane with use of binocular disparity, and in the second experiment the disparity of dots in the peripheral region was randomly selected from a given range. The results showed that the magnitude of mis-binding was weakened, but not completely disappeared even when two regions did not have a common 3D surface. These results indicate that the surface information from motion and stereodepth may influence in the process of color-motion mis-binding.

  • PDF

Distributed Coding Scheme for Multi-view Video through Efficient Side Information Generation

  • Yoo, Jihwan;Ko, Min Soo;Kwon, Soon Chul;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1762-1773
    • /
    • 2014
  • In this paper, a distributed image coding scheme for multi-view video through an efficient generation of side information is proposed. A distributed video coding technique corrects the errors in the side information, which is generated with the original image, by using the channel coding technique at the decoder. Therefore, the more correct the generated side information is, the better the performance of distributed video coding. The proposed technique is to apply the distributed video coding schemes to the image coding for multi-view video. It generates side information by selectively and efficiently using both 3-dimensional warping based on the depth map with spatially adjacent frames and motion-compensated temporal interpolation with temporally adjacent frames. In this scheme the difference between the adjacent frames, the sizes of the motion vectors for the adjacent blocks, and the edge information are used as the selection criteria. From the experiments, it was observed that the quality of the side information generated by the proposed technique was improved by the average peak signal-to-noise ratio of 0.97dB than the one by motion-compensated temporal interpolation or 3-dimensional warping. The result from analyzing the rate-distortion curves revealed that the proposed scheme could reduce the bit-rate by 8.01% on average at the same peak signal-to-noise ratio value, compared to previous work.

Feasibility of the Depth Camera-based Physical Health Monitoring System for Elderly Living Alone

  • Sungbae, Jo
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.1
    • /
    • pp.106-112
    • /
    • 2024
  • Objective: This study aimed to evaluate the validity of a depth camera-based system for monitoring physical function, assessing its feasibility for accurately monitoring activities of daily living. Design: A cross-sectional study. Methods: Twenty-three participants were enlisted to perform fifteen activities of daily living within a living laboratory designed to simulate a home environment. Activities were monitored using a depth camera system capable of classifying actions into standing, sitting, and lying down, with a conventional video camera employed for activity recording. The duration of each activity, as measured by the system, was compared to direct observations made by a physical therapist which were analyzed using a motion analysis software. The association between these two measurement approaches was assessed through correlation analysis, coefficient of determination, intraclass correlation coefficient (ICC), and Bland-Altman plots. Results: Our findings indicated that standing activities exhibited the highest correlation (r=0.847) between the system measurements and physical therapist observations, followed by sitting (r=0.817) and lying down (r=0.734), which demonstrated lower correlations. However, the ICC and Bland-Altman plots revealed notable variances between the two measurement methods, particularly for activities involving lying down. Conclusions: In this study, the depth camera-based physical monitoring system showed promise feasibility in distinguishing standing, sitting, and lying down activities at home environments. However, the current study also underlined some necessities of enhancements in capturing lying down activities.

A Walking Movement System for Virtual Reality Navigation (가상현실 네비게이션을 위한 보행 이동 시스템의 개발)

  • Cha, Moohyun;Han, Soonhung;Huh, Youngcheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • A walking navigation system (usually known as a locomotion interface) is an interactive platform which gives simulated walking sensation to users using sensed bipedal motion signals. This enables us to perform navigation tasks using only bipedal movement. Especially, it is useful for the certain VR task which emphasizes on physical human movement, or accompanies understanding of the size and complexity of building structures. In this work, we described system components of VR walking system and investigated several types of walking platform by literature survey. We adopted a MS Kinect depth sensor for the motion recognition and a treadmill which includes directional turning mechanism for the walking platform. Through the integration of these components with a VR navigation scenario, we developed a simple VR walking navigation system. Finally several technical issues were found during development process, and further research directions were suggested for the system improvement.

Spatial Modulation of Nonlinear Waves and Their Kinematics using a Numerical Wave Tank (수치 파동 수조를 이용한 비선형파의 파형변화와 속도분포 해석)

  • Koo, Weon-Cheol;Choi, Ka-Ram
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.12-16
    • /
    • 2009
  • In this study, the wave profiles and kinematics of highly nonlinear waves at various water depths were calculated using a 2D fully nonlinear Numerical Wave Tank (NWT). The NWT was developed based on the Boundary Element Method (BEM) with the potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme by 4th-order Runge-Kutta time integration. The spatial variation of intermediate-depth waves along the direction of wave propagation was caused by the unintended generation of 2nd-order free waves, which were originally investigated both theoretically and experimentally by Goda (1998). These free waves were induced by the mismatch between the linear motion of wave maker and nonlinear displacement of water particles adjacent to the maker. When the 2nd-order wave maker motion was applied, the spatial modulation of the waves caused by the free waves was not observed. The respective magnitudes of the nonlinear wave components for various water depths were compared. It was found that the high-order wave components greatly increase as the water depth decreases. The wave kinematics at various locations were calculated and compared with the linear and the Stokes 2nd-order theories.

Camera Motion Estimation using Geometrically Symmetric Points in Subsequent Video Frames (인접 영상 프레임에서 기하학적 대칭점을 이용한 카메라 움직임 추정)

  • Jeon, Dae-Seong;Mun, Seong-Heon;Park, Jun-Ho;Yun, Yeong-U
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • The translation and the rotation of camera occur global motion which affects all over the frame in video sequence. With the video sequences containing global motion, it is practically impossible to extract exact video objects and to calculate genuine object motions. Therefore, high compression ratio cannot be achieved due to the large motion vectors. This problem can be solved when the global motion compensated frames are used. The existing camera motion estimation methods for global motion compensation have a large amount of computations in common. In this paper, we propose a simple global motion estimation algorithm that consists of linear equations without any repetition. The algorithm uses information .of symmetric points in the frame of the video sequence. The discriminant conditions to distinguish regions belonging to distant view from foreground in the frame are presented. Only for the distant view satisfying the discriminant conditions, the linear equations for the panning, tilting, and zooming parameters are applied. From the experimental results using the MPEG test sequences, we can confirm that the proposed algorithm estimates correct global motion parameters. Moreover the real-time capability of the proposed technique can be applicable to many MPEG-4 and MPEG-7 related areas.

Motion Control of a Mobile Robot Using Natural Hand Gesture (자연스런 손동작을 이용한 모바일 로봇의 동작제어)

  • Kim, A-Ram;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • In this paper, we propose a method that gives motion command to a mobile robot to recognize human being's hand gesture. Former way of the robot-controlling system with the movement of hand used several kinds of pre-arranged gesture, therefore the ordering motion was unnatural. Also it forced people to study the pre-arranged gesture, making it more inconvenient. To solve this problem, there are many researches going on trying to figure out another way to make the machine to recognize the movement of the hand. In this paper, we used third-dimensional camera to obtain the color and depth data, which can be used to search the human hand and recognize its movement based on it. We used HMM method to make the proposed system to perceive the movement, then the observed data transfers to the robot making it to move at the direction where we want it to be.

An Experimental Study of the Submerged Depth Effect on the Manoeuvrability in a Horizontal Plane of an Underwater Vehicle (수중운동체의 잠수심도에 따른 수평면내 조종성능 변화에 대한 실험적 연구)

  • Seol, Dong-Myung;Rhee, Key-Pyo;Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, horizontal manoeuvrability of an underwater vehicle near free surface was investigated. Planar Motion Mechanism(PMM) tests were performed at the shallow depth within 4.5 times of vehicle's diameter. Hydrodynamic coefficients related to the horizontal movement were estimated from the measured data using Least SQuare(LS) method and analyzed at each submerged depth. Furthermore, horizontal dynamic stability, trajectory of turning and zigzag test were investigated for the various depths. As underwater vehicle is positioned nearer to the free surface, forces increase and moment decreases. Tested model was found to be stable only at the depth 0.5 times of vehicle's diameter.