• 제목/요약/키워드: Motion in Depth

검색결과 627건 처리시간 0.03초

View synthesis with sparse light field for 6DoF immersive video

  • Kwak, Sangwoon;Yun, Joungil;Jeong, Jun-Young;Kim, Youngwook;Ihm, Insung;Cheong, Won-Sik;Seo, Jeongil
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.24-37
    • /
    • 2022
  • Virtual view synthesis, which generates novel views similar to the characteristics of actually acquired images, is an essential technical component for delivering an immersive video with realistic binocular disparity and smooth motion parallax. This is typically achieved in sequence by warping the given images to the designated viewing position, blending warped images, and filling the remaining holes. When considering 6DoF use cases with huge motion, the warping method in patch unit is more preferable than other conventional methods running in pixel unit. Regarding the prior case, the quality of synthesized image is highly relevant to the means of blending. Based on such aspect, we proposed a novel blending architecture that exploits the similarity of the directions of rays and the distribution of depth values. By further employing the proposed method, results showed that more enhanced view was synthesized compared with the well-designed synthesizers used within moving picture expert group (MPEG-I). Moreover, we explained the GPU-based implementation synthesizing and rendering views in the level of real time by considering the applicability for immersive video service.

스테레오 비전 센서의 깊이 및 색상 정보를 이용한 환경 모델링 기반의 이동로봇 주행기술 (Direct Depth and Color-based Environment Modeling and Mobile Robot Navigation)

  • 박순용;박민용;박성기
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.194-202
    • /
    • 2008
  • This paper describes a new method for indoor environment mapping and localization with stereo camera. For environmental modeling, we directly use the depth and color information in image pixels as visual features. Furthermore, only the depth and color information at horizontal centerline in image is used, where optical axis passes through. The usefulness of this method is that we can easily build a measure between modeling and sensing data only on the horizontal centerline. That is because vertical working volume between model and sensing data can be changed according to robot motion. Therefore, we can build a map about indoor environment as compact and efficient representation. Also, based on such nodes and sensing data, we suggest a method for estimating mobile robot positioning with random sampling stochastic algorithm. With basic real experiments, we show that the proposed method can be an effective visual navigation algorithm.

  • PDF

크랙과 이동질량이 존재하는 티모센코 보의 동특성 (Dynamic Behavior of Timoshenko Beam with Crack and Moving Mass)

  • 윤한익;최창수;손인수
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.143-151
    • /
    • 2005
  • This paper study the effect of open cracks on the dynamic behavior of simply supported Timoshenko beam with a moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. Using Lagrange's equation derives the equation of motion. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by the applying fundamental fracture mechanics theory. As the depth of the crack is increased the mid-span deflection of the Timoshenko beam with the moving mass is increased. And the effects of depth and position of crack on dynamic behavior of simply supported beam with moving mass are discussed.

각막 압평을 이용한 로봇 바늘 삽입법: 심부표층각막이식수술에의 적용 (Robotic Needle Insertion Using Corneal Applanation for Deep Anterior Lamellar Keratoplasty)

  • 박익종;신형곤;김기훈;김홍균;정완균
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.64-71
    • /
    • 2021
  • This paper describes a robotic teleoperation system to perform an accurate needle insertion into a cornea for a separation between the stromal layer and Descemet's membrane during deep anterior lamellar Keratoplasty (DALK). The system can reduce the hand tremor of a surgeon by scaling the input motion, which is the control input of the slave robot. Moreover, we utilize corneal applanation to estimate the insertion depth. The proposed system was validated by performing the layer separation using 25 porcine eyes. The average depth of needle insertion was 742 ± 39.8 ㎛ while the target insertion depth was 750 ㎛. Tremor error was reduced from 402 ± 248 ㎛ in the master device to 28.5 ± 21.0 ㎛ in the slave robot. The rate of complete success, partial success, and failure were 60, 28, and 12%, respectively. The experimental results showed that the proposed system was able to reduce the hand tremor of surgeons and perform precise needle insertion during DALK.

선형 및 일반형 침투깊이를 이용한 6자유도 햅틱 렌더링 알고리즘 (Six-degree-of-freedom Haptic Rendering using Translational and Generalized Penetration Depth Computation)

  • ;이영은;김영준
    • 로봇학회논문지
    • /
    • 제8권3호
    • /
    • pp.173-178
    • /
    • 2013
  • We present six-degree-of-freedom (6DoF) haptic rendering algorithms using translational ($PD_t$) and generalized penetration depth ($PD_g$). Our rendering algorithm can handle any type of object/object haptic interaction using penalty-based response and makes no assumption about the underlying geometry and topology. Moreover, our rendering algorithm can effectively deal with multiple contacts. Our penetration depth algorithms for $PD_t$ and $PD_g$ are based on a contact-space projection technique combined with iterative, local optimization on the contact-space. We circumvent the local minima problem, imposed by the local optimization, using motion coherence present in the haptic simulation. Our experimental results show that our methods can produce high-fidelity force feedback for general polygonal models consisting of tens of thousands of triangles at near-haptic rates, and are successfully integrated into an off-the-shelf 6DoF haptic device. We also discuss the benefits of using different formulations of penetration depth in the context of 6DoF haptics.

Paddling Posture Correction System Using IMU Sensors

  • Kim, Kyungjin;Park, Chan Won
    • 센서학회지
    • /
    • 제27권2호
    • /
    • pp.86-92
    • /
    • 2018
  • In recent times, motion capture technology using inertial measurement unit (IMU) sensors has been actively used in sports. In this study, we developed a canoe paddle, installed with an IMU and a water level sensor, as a system tool for training and calibration purposes in water sports. The hardware was fabricated to control an attitude heading reference system (AHRS) module, a water level sensor, a communication module, and a wireless charging circuit. We also developed an application program for the mobile device that processes paddling motion data from the paddling operation and also visualizes it. An AHRS module with acceleration, gyro, and geomagnetic sensors each having three axes, and a resistive water level sensor that senses the immersion depth in the water of the paddle represented the paddle motion. The motion data transmitted from the paddle device is internally decoded and classified by the application program in the mobile device to perform visualization and to operate functions of the mobile training/correction system. To conclude, we tried to provide mobile knowledge service through paddle sport data using this technique. The developed system works reasonably well to be used as a basic training and posture correction tool for paddle sports; the transmission delay time of the sensor system is measured within 90 ms, and it shows that there is no complication in its practical usage.

동작 기반의 훈련콘텐츠 : "3D 우주탐험" 개발사례 (Development of Motion based Training Contents: "3D Space Exploration" Case Study)

  • 임창주;박승구;정윤근
    • 한국게임학회 논문지
    • /
    • 제13권5호
    • /
    • pp.63-72
    • /
    • 2013
  • 기존의 학습자에게 제공되는 교육용 콘텐츠의 대부분이 2D 기반의 단방향 교육으로 효과가 현저히 낮은 것으로 나타났다. 이를 개선하기 위하여 본 논문에서는 상호 인터랙션을 적용한 3D 우주탐험을 개발함으로써 학습 몰입도를 높이고 교육효과를 극대화하였다. 제안한 방법은 과학 학습 특성상 기존 2D 개발 기술로는 개념화 및 실체적 접근이 어려운 학습영역을 3D 객체로 제작하였고 이를 학습자가 직접 접근할 수 있도록 동작인식 센서를 이용한 체감형 인터페이스 기술을 연구하여 콘텐츠에 적용하였다. 본 논문의 결과로 학습자는 '3D 우주탐험' 교육용 콘텐츠를 직접 체험함으로써 학생들이 실제 현장에서 수업을 받는 것과 같은 몰입교육에 큰 효과가 있을 것으로 예상된다.

조파판 수중운동의 근사해석과 조파기 설계에 응용 (Simplified Analytic Solution of Submerged Wave Board Motion and Its Application on the Design of Wave Generator)

  • 권종오;김효철;류재문;오정근
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.461-469
    • /
    • 2017
  • A segment of the wave board has been expressed as a submerged line segment in the two dimensional wave flume. The lower end of the line segment could be extended to the bottom of the wave flume and the other opposite upper end of the board could be extended to the free surface. It is assumed that the motion of the wave board could be defined by the sinusoidal motion in horizontal direction on either end of the wave board. When the amplitude of sinusoidal motion of the wave board on lower and upper end are equal, the wave board motion could express the horizontally oscillating submerged segment of piston type wave generator. The submerged segment of flap type wave generator also could be expressed by taking the motion amplitude differently for the either end of the board. The pivot point of the segment motion could play a role of hinge point of the flap type wave generator. Simplified analytic solution of oscillating submerged wave board segment in water of finite depth has been derived through the first order perturbation method at two dimensional domain. The case study of the analytic solution has been carried out and it is found out that the solution could be utilized for the design of wave generator with arbitrary shape by linear superposition.

Correlation Between Knee Muscle Strength and Maximal Cycling Speed Measured Using 3D Depth Camera in Virtual Reality Environment

  • Kim, Ye Jin;Jeon, Hye-seon;Park, Joo-hee;Moon, Gyeong-Ah;Wang, Yixin
    • 한국전문물리치료학회지
    • /
    • 제29권4호
    • /
    • pp.262-268
    • /
    • 2022
  • Background: Virtual reality (VR) programs based on motion capture camera are the most convenient and cost-effective approaches for remote rehabilitation. Assessment of physical function is critical for providing optimal VR rehabilitation training; however, direct muscle strength measurement using camera-based kinematic data is impracticable. Therefore, it is necessary to develop a method to indirectly estimate the muscle strength of users from the value obtained using a motion capture camera. Objects: The purpose of this study was to determine whether the pedaling speed converted using the VR engine from the captured foot position data in the VR environment can be used as an indirect way to evaluate knee muscle strength, and to investigate the validity and reliability of a camera-based VR program. Methods: Thirty healthy adults were included in this study. Each subject performed a 15-second maximum pedaling test in the VR and built-in speedometer modes. In the VR speedometer mode, a motion capture camera was used to detect the position of the ankle joints and automatically calculate the pedaling speed. An isokinetic dynamometer was used to assess the isometric and isokinetic peak torques of knee flexion and extension. Results: The pedaling speeds in VR and built-in speedometer modes revealed a significantly high positive correlation (r = 0.922). In addition, the intra-rater reliability of the pedaling speed in the VR speedometer mode was good (ICC [intraclass correlation coefficient] = 0.685). The results of the Pearson correlation analysis revealed a significant moderate positive correlation between the pedaling speed of the VR speedometer and the peak torque of knee isokinetic flexion (r = 0.639) and extension (r = 0.598). Conclusion: This study suggests the potential benefits of measuring the maximum pedaling speed using 3D depth camera in a VR environment as an indirect assessment of muscle strength. However, technological improvements must be followed to obtain more accurate estimation of muscle strength from the VR cycling test.

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF