• Title/Summary/Keyword: Motion error measurement

Search Result 217, Processing Time 0.03 seconds

Robust Least Squares Motion Deblurring Using Inertial Sensor for Strapdown Image IR Sensors (스트랩다운 적외선 영상센서를 위한 관성센서 기반 강인최소자승 움직임 훼손영상 복원 기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.314-320
    • /
    • 2012
  • This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.

Self-Calibration of a Robot Manipulator by Using the Moving Pattern of an Object (물체의 운동패턴을 이용한 로보트 팔의 자기보정)

  • Young Chul Kay
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.777-787
    • /
    • 1995
  • This paper presents a new method for automatically calibrating robot link (Kinematic) parameters during the process of estimating motion parameters of a moving object. The motion estimation is performed based on stereo cameras mounted on the end-effector of a robot manipulator. This approach significantly differs from other calibration approaches in that the calibration is achieved by simply observing the motion of the moving object (without resorting to any other external calibrating tools) at numerous and widely varying joint-angle configurations. A differential error model, which expresses the measurement errors of a robot in terms of robot link parameter errors and motion parameters, is developed. And then a measurement equation representing the true measurement values is derived. By estimating the above two kinds of parameters minimizing the difference between the measurement equations and the true moving pattern, the calibration of the robot link parameters and the estimation of the motion parameters are accomplished at the same time.

  • PDF

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

Motion analysis system using image processing (화상처리를 이용한 동작분석 시스템에 관한 연구)

  • 박경수;반영환;이안재;임창주;오인석;이현철
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.71-75
    • /
    • 1997
  • This paper presents the development of videobased 3-dimensional tracking system. Measurement of human motion is important in the application of ertonomics. The system uses advanced direct video measurement technology. Passive retro-reflecting markers are attached to a subject and movements of markers are observed by two CCD cameras. Infrared light emitted near the CCD cameras is reflected by the markers and is detected by the cameras. The images are captured by Samsung MVB302 board and the centers of markers are calculated by DSP program. The positions of markers are transferred from MVB02 board to the computer through AT bus. The computer then tracks the position of each marker and saves the data. This system has dynamic accuracy with 0.7% average error and 4.2% maximum error, and the sampling rate to 6 .approx. 10 Hz, and this system can analyse the trajectory and speed of the marker. The results of this study can be used for operator's motion analysis, task analysis, and hand movement characteristic analysis.

  • PDF

Influence of Heart Rate and Innovative Motion-Correction Algorithm on Coronary Artery Image Quality and Measurement Accuracy Using 256-Detector Row Computed Tomography Scanner: Phantom Study

  • Jeong Bin Park;Yeon Joo Jeong;Geewon Lee;Nam Kyung Lee;Jin You Kim;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Objective: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. Materials and Methods: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50-120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). Results: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). Conclusion: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.

Analysis of Navigation Error According to Rotational Motions of Rotational Inertial Navigation for Designing Optimal Rotation Sequence (최적 회전 절차 설계를 위한 회전형 관성항법장치의 회전 동작별 항법 오차 분석)

  • Jae-Hyuck Cha;Chan-Gook Park;Seong-Yun Cho;Min-Su Jo;Chan-Ju Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.445-452
    • /
    • 2024
  • This paper analyzes the navigation error for each rotational motion in order to design an optimal rotation sequence, which is a key technology in the rotational inertial navigation. Rotational inertial navigation system is designed to cancel out navigation errors caused by inertial sensor errors by periodically rotating the inertial measurement unit. A properly sequenced rotational motion cancels out the maximum amount of navigation error and is known as an optimal rotation sequence. To design such an optimal turning procedure, this paper identifies the feasible rotational motions that can be implemented in a rotational inertial navigation system and analyzes the navigation error introduced by each rotational motion. In addition, by analyzing the characteristics of the navigation error generated during a rotation sequence in combination, this paper presents the conditions for designing an optimal rotation sequence.

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

Motion Boundary Detection and Motion Vector Estimation by spatio-temporal Gradient Method using a New Spatial Gradient (새로운 공간경사를 사용한 시공간 경사법에 의한 운동경계 검출 및 이동벡터 추정)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.59-68
    • /
    • 1993
  • The motion vector estimation and motion boundary detection have been briskly studied since they are an important clue for analysis of object structure and 3-d motion. The purpose of this researches is more exact estimation, but there are two main causes to make inaccurate. The one is the erroneous measurement of gradients in brightness values and the other is the blurring of motion boundries which is caused by the smoothness constraint. In this paper, we analyze the gradient measurement error of conventional methods and propose new technique based on it. When the proposed method is applied to the motion boundary detection in Schunck and motion vector estimation in Horn & Schunck, it is shown to have much better performance than conventional method is some artificial and real image sequences.

  • PDF

A Disk-type Capacitive Sensor for Five-dimensional Motion Measurements (5 차원 변위 측정용 원판형 정전용량 센서)

  • Ahn, Hyeong-Joon;Park, Jung-Ho;Um, Chang-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.655-662
    • /
    • 2007
  • This paper presents a disk-type capacitive sensor for simultaneous measurement of five-dimensional motions of a target. The sensor can be manufactured with a printed circuit board (PCB) such that the sensor can be integrated with its electronics in a single PCB board, whereby the manufacturing costs is considerably reduced. The sensor is optimally designed through an error analysis of possible mechanical errors. Furthermore, the sensor can correct the horizontal motion measurement errors due to the sensor installation tilting error. A proto-type PCB sensor, electronics and a test rig were built, and the effectiveness of the developed sensor was proved through experiments.

  • PDF

Effects of Disk Thickness and Pemto Slider on Position Error Signal for High TPI Hard Disk Drive (고밀도 디스크 드라이브를 위한 디스크 두께와 Pemto 슬라이더가 PES에 미치는 영향)

  • Han Yun-Sik;Lee Ho Seong;Song Yong-Han
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • This paper investigates the effects of disk thickness and Pemto slider on PES(position error signal) for high TPI(track per inch) drives above 150kTPI at early stage of their development. In order to reduce the disk flutter which becomes a dominant contributor to the TMR, the thicker disks with both 63 and 69mi1 have been used. Also, PES of a Pemto slider with thinner thickness than Pico slider has been estimated to decrease the conversion factor of disk motion in axial direction to head off-track motion. A frequency-domain PES estimation and prediction tool has been developed via measurement of disk flutter and HSA(head stack assembly) forced vibration. It has been validated by the measured PES in drive level. Based on the model and measurement of disk flutter, PES of a drive with the thicker disk and Pemto slider is predicted and their impact is investigated.

  • PDF