• Title/Summary/Keyword: Motion controller

Search Result 1,229, Processing Time 0.029 seconds

Development of an Embedded Motion Controller based on the IEC 61131-3 International Standard Language (IEC 61131-3 국제표준언어 기반 임베디드 모션제어기의 개발)

  • Kim, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3574-3580
    • /
    • 2009
  • An embedded motion controller supporting the PLC programming environment based on the IEC 61131-3 International Standard Language was developed in this paper. In this developed motion controller, the CoDeSys, one of the IEC61131-3 development tools, was embedded in order to support that of PLC as well as the development environment of the PC, and the various function blocks based on PLCopen standard for motion control such as the linear and circular interpolation control were implemented. Moreover, the ethernet based remote control on real-time operating system and the motion simulator for a motion programmer were implemented.

HMM-based Motion Recognition with 3-D Acceleration Signal (3차원 가속도 데이터를 이용한 HMM 기반의 동작인식)

  • Kim, Sang-Ki;Park, Gun-Hyuk;Jeon, Seok-Hee;Yim, Sung-Hoon;Han, Gab-Jong;Choi, Seung-Moon;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.216-220
    • /
    • 2009
  • In this paper we propose a motion recognition method for handheld controller 3-D acceleration signals, generated by 3 axis accelerometer in the controller, are transmitted to the computer by Bluetooth communication. We extract motion segments from continuous acceleration signals and apply to each motion model, which is trained in training phase. Hidden Markov Model was used to model each motion. We applied proposed method to three motion sets, the recognition result was good enough to practical use.

A Design of Over-driving Controller to Reduce Motion Blur (Motion Blur를 줄이기 위한 Over-driving Controller 설계)

  • Nam, Ki-Hun;Shin, Yong-Seb
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • We can see the motion blur phenomenon on theedge of the moving picture when it moves in the LCDs. To reduce this phenomenon, we suggested a new over-deriving method, implemented on the board XUP Virtex-2 Pro Development System by using Virtex-2 Pro XUP XC2VP30 and improved the Motion Blur. In this method, we did not use additional parts except for a SDRAM. Hardware implementation for IP and data interface were handled in software. In this paper, we used the moving bar and the moving video image as a design model. We also showed that the afterimage was reduced and the vivid moving images was displayed. through this method.

Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities (상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어)

  • Lee, Soo-Han;Shin, Kyu-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • Baik Won-Sik;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.41-45
    • /
    • 2001
  • This paper presents an implementation of motion control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F240 DSP. SRM position control system possess several advantages over other motors, including high efficiency, simple structure, low cost, and four-quadrant operation at a wide speed range, especially for the servo drive systems with precision, stability and fast response characteristics in the industrial applications. In the suggested motion control system, position control using digital hysteresis controller is developed, and is evaluated using experimental testing. The developed system for cost reduction and high-performance by fully digital controller is shown a good response characteristic of motion control results.

  • PDF

Human Motion Control Using Dynamic Model (동력학 모델을 이용한 인체 동작 제어)

  • Kim, Chang-Hoe;O, Byeong-Ju;Kim, Seung-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

An intelligent master controller with mixed mode for teleoperation (혼합제어모드를 이용한 텔레오퍼레이션 작업용 지능형 매스터 컨트롤러)

  • 이영우;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.461-465
    • /
    • 1996
  • Position and rate control modes arc the two common modes for controlling remote manipulators with joysticks or hand controllers. Generally, position mode is easier for teleoperation than rate modes, when the manipulation work space is small or comparable to the human operator's control space. When the telemanipulator's work space is very large, human operator's control motion range must be large to allow telemanipulator's full range of motion resulting poor control resolution. One way to solve the poor resolution problem is to use indexing. However, rate mode can provide any higher degree of resolution without use of indexing. If two modes are mixed, master controller will be more convenient. The mixed mode algorithm, changes operating mode from position mode to rate mode or vise versa using fuzzy logic. The fuzzy logic algorithm, which has been designed to recognize the teleoperator's intended motion properly, provides an intelligence to a master controller.

  • PDF

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

Volume Velocity Control of Active Panel to Reduce Interior Noise (실내소음 저감을 위한 능동패널의 체속도 제어)

  • 김인수
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.