• Title/Summary/Keyword: Motion and energy

Search Result 1,519, Processing Time 0.024 seconds

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

A Study on ER Suspension System with Energy Generation (재생 에너지를 특징으로하는 ER현가장치 연구)

  • 김기선;김승환
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.71-78
    • /
    • 1999
  • This paper presents a new type of energy generative ER suspension system which does not require external power sources. This is accomplished by converting vibration energy(kinetic energy) into electrical energy. In order to undertake this, an appropriate size of the ER damper is manufactured by incorporation a mechanism which changes the linear motion of the ER damper to the rotary motion. This rotary motion is amplified by gears and activates a generator to produce the electrical energy. The efficiency of energy generation is evaluated and the level of damping force with generated power is also investigated. Then, the ER suspension system is applied to the quarter car model, and its vibration isolation is experimentally evaluated with respect to the piston speed.

  • PDF

Conceptual Design of Moored Floating Meterological Buoy with LiDAR (LiDAR가 탑재된 계류된 부유식 기상 부이의 개념 설계)

  • Kim, Jeongrok;Lee, Hyebin;Cho, Il-Hyoung;Kyong, Nam-Ho;Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • This paper reports the conceptual design process for a floating metocean data measurement system (FMDMS) for measuring wind information at sea. The FMDMS consists of three circular pontoons, columns, and a deck, which the LiDAR (lighting detection and ranging) is installed on. The dynamics of the mooring lines and motion responses of the FMDMS were analyzed using commercial codes such as WAMIT and OrcaFlex. One design criterion of the developed FMDMS was to maintain the motion responses as small as possible to enhance the LiDAR's accuracy. Starting with the preliminary design parameters such as the FMDMS's principal dimensions, weight, and important parameters of mooring system, we checked whether the FMDMS met the design requirements at each design stage, and then made modifications as necessary. The developed FMDMS showed a large pitch behavior for a small heave motion.

Correlation of elastic input energy equivalent velocity spectral values

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.957-976
    • /
    • 2015
  • Recently, two energy-based response parameters, i.e., the absolute and the relative elastic input energy equivalent velocity, have been receiving a lot of research attention. Several studies, in fact, have demonstrated the potential of these intensity measures in the prediction of the seismic structural response. Although some ground motion prediction equations have been developed for these parameters, they only provide marginal distributions without information about the joint occurrence of the spectral values at different periods. In order to build new prediction models for the two equivalent velocities, a large set of ground motion records is used to calculate the correlation coefficients between the response spectral values corresponding to different periods and components of the ground motion. Then, functional forms adopted in models from the literature are calibrated to fit the obtained data. A new functional form is proposed to improve the predictions of the considered models from the literature. The components of the ground motion considered in this study are the two horizontal ones only. Potential uses of the proposed equations in addition to the prediction of the correlation coefficients of the equivalent velocity spectral values are shown, such as the prediction of derived intensity measures and the development of conditional mean spectra.

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Development of Monitoring and Diagnosis System for Linear Motion Unit (직선 운동 유닛의 감시 및 진단 시스템 개발)

  • Huang, Jian;Kim, Hwa-Young;Ahn, Jung-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.635-636
    • /
    • 2012
  • In the present work, investigations by high frequency resonance technique for diagnosis of defect frequencies of linear motion unit are reported. Raw vibration signature of the moving parts at different speeds of operation has been demodulated. Envelope detected spectrum is analyzed to evaluate various defect frequencies and their energy levels. Experimentally evaluated frequencies are compared with theoretically determined defect frequencies. These frequency values and their energy levels are used to monitor intrinsic condition of linear motion unit as well as to establish severity of existing/developed defects on the LM guide and inside the LM block. Relative comparisons of linear motion units of the same type are made at various operating speeds under identical conditions of operation on the basis of identified defect frequencies and severity of defects.

  • PDF

Adaptive subband vector quantization using motion vector (움직임 벡터를 이용한 적응적 부대역 벡터 양자화)

  • 이성학;이법기;이경환;김덕규
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.677-680
    • /
    • 1998
  • In this paper, we proposed a lwo bit rate subband coding with adaptive vector quantization using the correlation between motion vector and block energy in subband. In this method, the difference between the input signal and the motion compensated interframe prediction signal is decomposed into several narrow bands using quadrature mirror filter (QMF) structure. The subband signals are then quantized by adaptive vector quantizers. In the codebook generating process, each classified region closer to the block value in the same region after the classification of region by the magnitude of motion vector and the variance values of subband block. Because codebook is genrated considering energy distribution of each region classified by motion vector and variance of subband block, this technique gives a very good visual quality at low bit rate coding.

  • PDF

Significant Motion-Based Adaptive Sampling Module for Mobile Sensing Framework

  • Muthohar, Muhammad Fiqri;Nugraha, I Gde Dharma;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.948-960
    • /
    • 2018
  • Many mobile sensing frameworks have been developed to help researcher doing their mobile sensing research. However, energy consumption is still an issue in the mobile sensing research, and the existing frameworks do not provide enough solution for solving the issue. We have surveyed several mobile sensing frameworks and carefully chose one framework to improve. We have designed an adaptive sampling module for a mobile sensing framework to help solve the energy consumption issue. However, in this study, we limit our design to an adaptive sampling module for the location and motion sensors. In our adaptive sampling module, we utilize the significant motion sensor to help the adaptive sampling. We experimented with two sampling strategies that utilized the significant motion sensor to achieve low-power consumption during the continuous sampling. The first strategy is to utilize the sensor naively only while the second one is to add the duty cycle to the naive approach. We show that both strategies achieve low energy consumption, but the one that is combined with the duty cycle achieves better result.

Studies on Variable Liquid-Column Oscillator for High Efficiency Floating Wave Energy Conversion System (가변 수주진동장치를 이용한 고효율 파력발전에 관한 연구)

  • Yang, Dong-Soon;Cho, Byung-Hak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • The results of a simulation study of variable liquid column oscillations in U-tanks with a novel control scheme are presented. The configuration under investigation is analogous to that of the tuned liquid-column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. However, by virtue of an adequate controller, the response of amplitude of the U-tanks becomes larger in a desired frequency range. The motion of wave energy conversion system equipped with a variable liquid column oscillator is described by a series of nonlinear differential equations. The equations describe the motion of body under ocean wave excitation, and the motion of liquid with an air-spring effect caused by the compression and expansion of air in vertical liquid columns and air chambers. It is shown that the effect of the air-spring has a vital role to maintain the natural frequency of oscillation in the system to synchronize with the frequency of the ocean wave, thus the system provides the most effective mode for energy extraction from the ocean.

Prediction of hysteretic energy demands in steel frames using vector-valued IMs

  • Bojorquez, Eden;Astorga, Laura;Reyes-Salazar, Alfredo;Teran-Gilmore, Amador;Velazquez, Juan;Bojorquez, Juan;Rivera, Luz
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.697-711
    • /
    • 2015
  • It is well known the importance of considering hysteretic energy demands for the seismic assessment and design of structures. In such a way that it is necessary to establish new parameters of the earthquake ground motion potential able to predict energy demands in structures. In this paper, several alternative vector-valued ground motion intensity measures (IMs) are used to estimate hysteretic energy demands in steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure Sa($T_1$) as first component. As the second component, IMs related to peak, integral and spectral shape parameters are selected. The aim of the study is to provide new parameters or vector-valued ground motion intensities with the capacity of predicting energy demands in structures. It is concluded that spectral-shape-based vector-valued IMs have the best relation with hysteretic energy demands in steel frames subjected to narrow-band earthquake ground motions.