• Title/Summary/Keyword: Motion and Structure Estimation

Search Result 148, Processing Time 0.029 seconds

Ground-Motion Prediction Equations based on refined data for dynamic time-history analysis

  • Moghaddam, Salar Arian;Ghafory-Ashtiany, Mohsen;Soghrat, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.779-807
    • /
    • 2016
  • Ground Motion Prediction Equations (GMPEs) are essential tools in seismic hazard analysis. With the introduction of probabilistic approaches for the estimation of seismic response of structures, also known as, performance based earthquake engineering framework; new tasks are defined for response spectrum such as the reference criterion for effective structure-specific selection of ground motions for nonlinear time history analysis. One of the recent efforts to introduce a high quality databank of ground motions besides the corresponding selection scheme based on the broadband spectral consistency is the development of SIMBAD (Selected Input Motions for displacement-Based Assessment and Design), which is designed to improve the reliability of spectral values at all natural periods by removing noise with modern proposed approaches. In this paper, a new global GMPE is proposed by using selected ground motions from SIMBAD to improve the reliability of computed spectral shape indicators. To determine regression coefficients, 204 pairs of horizontal components from 35 earthquakes with magnitude ranging from Mw 5 to Mw 7.1 and epicentral distances lower than 40 km selected from SIMBAD are used. The proposed equation is compared with similar models both qualitatively and quantitatively. After the verification of model by several goodness-of-fit measures, the epsilon values as the spectral shape indicator are computed and the validity of available prediction equations for correlation of the pairs of epsilon values is examined. General consistency between predictions by new model and others, especially, in short periods is confirmed, while, at longer periods, there are meaningful differences between normalized residuals and correlation coefficients between pairs of them estimated by new model and those are computed by other empirical equations. A simple collapse assessment example indicate possible improvement in the correlation between collapse capacity and spectral shape indicators (${\varepsilon}$) up to 20% by selection of a more applicable GMPE for calculation of ${\varepsilon}$.

The overall structure and operation of MPEG-2 TM5 encoder (MPEG-2 TM5 부호기의 구조와 작동)

  • 김준기;이호석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.259-261
    • /
    • 1999
  • 본 논문은 MPEG-2 TM 5 video 부호기의 전체구조 및 처리과정을 기술한다. MPEG-2는 저장 매체, 통신, 방송 매체 등을 위한 동영상 압축이 표준이다. MPEG-2 압축 방법에는 공간적 압축과 시간적 압축 방법이 있다. 공간적 압축 방법에는 화면에서의 중복성을 줄이기 위한 표본화 주파수(4:4:4, 4:2:2, 4:2:0, format), DCT, scanning(zigzag 혹은 alternate scanning)과 quantization이 있고 시간적 압축 방법에는 움직임 예측(motion estimation)과 I, P, B-picture를 사용하는 방법이 있다. 본 논문에서는 MPEG-2 부호기의 핵심을 전체 구조, DPCM, MPEG bitstream syntax, MPEG-2 부호화 알고리즘, 움직임 예측, 움직임 벡터, rate control 그리고 가변길이 코딩(variable length coding)으로 구분하여 소개한다.

  • PDF

A Study on The Feliability Predication Model of Gyroscope (자이로의 신뢰성 예측모델에 관한 연구)

  • 백순흠;문홍기;김호룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.475-481
    • /
    • 1993
  • The objective of this study is to develope the reliability prediction model for Float Rated Integrating Gyroscope( :FRIG) at maximum loading. The equation of motion for FRIG is firstly derived to set up the reliability prediction model. To analysis reliability or all parts of the gyro is not easy due to their complicated structure. Therefore the failure parts are chosen by Failure Mode Effective Analysis (:FMEA). F.E.M is utilized to calculate loads for the selseced rotating assembly and pivot / jewel. The technical reliability is calculated by applying reliability design theory with these results and the performance reliability is sought through distribution estimation with error test data. The bulk reliability of gyroscope is sought by applying the two results. The present prediction results are compared with the accumulation time in good agreement.

  • PDF

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

Ship Collision Analysis Technique considering Surrounding Water (주변 유체를 고려한 선박 충돌해석 기법 연구)

  • Lee, Sang-Gab;Lee, Jeong-Dae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Repetitive model refinement for structural health monitoring using efficient Akaike information criterion

  • Lin, Jeng-Wen
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1329-1344
    • /
    • 2015
  • The stiffness of a structure is one of several structural signals that are useful indicators of the amount of damage that has been done to the structure. To accurately estimate the stiffness, an equation of motion containing a stiffness parameter must first be established by expansion as a linear series model, a Taylor series model, or a power series model. The model is then used in multivariate autoregressive modeling to estimate the structural stiffness and compare it to the theoretical value. Stiffness assessment for modeling purposes typically involves the use of one of three statistical model refinement approaches, one of which is the efficient Akaike information criterion (AIC) proposed in this paper. If a newly added component of the model results in a decrease in the AIC value, compared to the value obtained with the previously added component(s), it is statistically justifiable to retain this new component; otherwise, it should be removed. This model refinement process is repeated until all of the components of the model are shown to be statistically justifiable. In this study, this model refinement approach was compared with the two other commonly used refinement approaches: principal component analysis (PCA) and principal component regression (PCR) combined with the AIC. The results indicate that the proposed AIC approach produces more accurate structural stiffness estimates than the other two approaches.

Evaluation of Earthquake Ground Motion Considering Dynamic Site Characteristics in Korea (국내 지반특성에 적합한 설계지반운동 결정 방법에 대한 연구)

  • Yoon, Jong-Ku;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.23-32
    • /
    • 2004
  • The local geologic and dynamic site characteristics, which include soil profiles, shear wave velocity profiles and depths to the bed rock were gathered from 148 sites all over the Korean peninsula and those values are compared to those in the western USA. Site response analyses were performed based on equivalent linear scheme using design rock-outcrop acceleration of 0.154g which corresponds to the collapse level of earthquake for seismic category I structure. The results show that the amplification factor based on Korean seismic design guideline underestimates the motion in short-period range and overestimates the motion in mid-period range. It is suggested that the existing Korean seismic guideline based on UBC is required to be modified considering dynamic site characteristics in Korea for the reliable estimation of site amplification.

Object-Based Video Segmentation Using Spatio-temporal Entropic Thresholding and Camera Panning Compensation (시공간 엔트로피 임계법과 카메라 패닝 보상을 이용한 객체 기반 동영상 분할)

  • 백경환;곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.126-133
    • /
    • 2003
  • This paper is related to a morphological segmentation method for extracting the moving object in video sequence using global motion compensation and two-dimensional spatio-temporal entropic thresholding. First, global motion compensation is performed with camera panning vector estimated in the hierarchical pyramid structure constructed by wavelet transform. Secondly, the regions with high possibility to include the moving object between two consecutive frames are extracted block by block from the global motion compensated image using two-dimensional spatio-temporal entropic thresholding. Afterwards, the LUT classifying each block into one among changed block, uncertain block, stationary block according to the results classified by two-dimensional spatio-temporal entropic thresholding is made out. Next, by adaptively selecting the initial search layer and the search range referring to the LUT, the proposed HBMA can effectively carry out fast motion estimation and extract object-included region in the hierarchical pyramid structure. Finally, after we define the thresholded gradient image in the object-included region, and apply the morphological segmentation method to the object-included region pixel by pixel and extract the moving object included in video sequence. As shown in the results of computer simulation, the proposed method provides relatively good segmentation results for moving object and specially comes up with reasonable segmentation results in the edge areas with lower contrast.

  • PDF

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery (드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석)

  • Gyujin Jang;Jaeyoung Kim;Dongwook Kim;Yong Suk Chung;Hak-Jin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.274-284
    • /
    • 2022
  • To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.