• Title/Summary/Keyword: Motion Tracking System

Search Result 655, Processing Time 0.034 seconds

Stabilization of Target Tracking with 3-axis Motion Compensation for Camera System on Flying Vehicle

  • Sun, Yanjie;Jeon, Dongwoon;Kim, Doo-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • This paper presents a tracking system using images captured from a camera on a moving platform. A camera on an unmanned flying vehicle generally moves and shakes due to external factors such as wind and the ego-motion of the machine itself. This makes it difficult to track a target properly, and sometimes the target cannot be kept in view of the camera. To deal with this problem, we propose a new system for stable tracking of a target under such conditions. The tracking system includes target tracking and 3-axis camera motion compensation. At the same time, we consider the simulation of the motion of flying vehicles for efficient and safe testing. With 3-axis motion compensation, our experimental results show that robustness and stability are improved.

Tracking of Single Moving Object based on Motion Estimation (움직임 추정에 기반한 단일 이동객체 추적)

  • Oh Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • The study on computer vision is aimed on creating a system to substitute the ability of human visual sensor. Especially, moving object tracking system is becoming an important area of study. In this study, we have proposed the tracking system of single moving object based on motion estimation. The tracking system performed motion estimation using differential image, and then tracked the moving object by controlling Pan/Tilt device of camera. Proposed tracking system is devided into image acquisition and preprocessing phase, motion estimation phase and object tracking phase. As a result of experiment, motion of moving object can be estimated. The result of tracking, object was not lost and tracked correctly.

  • PDF

Study on Extension of the 6-DOF Measurement Area for a Model Ship by Developing Auto-tracking Technology for Towing Carriage in Deep Ocean Engineering Tank

  • Jung, Jae-sang;Lee, Young-guk;Seo, Min-guk;Park, In-Bo;Kim, Jin-ha;Kang, Dong-bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • The deep ocean engineering basin (DOEB) of the Korea Research Institute of Ship and Ocean Engineering (KRISO) is equipped with an extreme-environment reproduction facility that can analyze the motion characteristics of offshore structures and ships. In recent years, there have been requirements for a wide range of six-degree-of-freedom (6-DOF) motion measurements for performing maneuvering tests and free-running tests of target objects (offshore structures or ships). This study introduces the process of developing a wide-area motion measurement technology by incorporating the auto-tracking technology of the towing carriage system to overcome the existing 6-DOF motion measurement limitation. To realize a wide range of motion measurements, the automatic tracking control system of the towing carriage in the DOEB was designed as a speed control method. To verify the control performance, the characteristics of the towing carriage according to the variation in control gain were analyzed. Finally, a wide range of motions was tested using a model test object (a remotely operated vehicle (ROV)), and the wide-area motion measurement technology was implemented using an automatic tracking control system for a towing carriage.

A Study on MTL Device Design and Motion Tracking in Virtual Reality Environments

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2019
  • Motion tracking and localization devices are an important building block of motion tracking systems in a virtual reality (VR) environment. This study is about improving the accuracy of motion and location for enhancing user immersion in experience type VR environment to position tracking technique. In this study, we propose and test a design of such a device. The module data test of the attitude and heading reference system shows that the implementation with the MPU-9250 sensor is successful and adequate to be used with short operation time. We consider various sensor hardware dependencies of VR, and compare various correction methods and filtering methods to lower the motion to photon (MTP) time that user movement is fully reflected on the display using sensor devices. The Kalman filter is used to combine the accelerometer with the gyroscope in the sensing unit.

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

Motion Tracking Algorithm for A CCTV System (CCTV 시스템을 위한 움직임 추적 기법)

  • Kang, Seoung-Il;Hong, Sung-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.295-296
    • /
    • 2006
  • This paper implements a method that tracking the moving objects that detected by the motion detection function of the digital CCTV system. We simply implement the motion detection function of the digital CCTV system that use frame difference and thresholding. When motion is detected, the motion detection function generates two outputs. One output is the event that the motion is arised in input image frame. The other output is coordinate that motion is exists. Then, do the block matching algorithm[2] using coordinate, that motion is exists, as initial coordinate of the block matching algorithm. The best matched coordinate is new initial coordinate of the block matching algorithm for the next image frame. We simply use the block matching algorithm that implements tracking the moving objects. It is simple, but useful the actual digital CCTV system.

  • PDF

Implementation and Verification of Deep Learning-based Automatic Object Tracking and Handy Motion Control Drone System (심층학습 기반의 자동 객체 추적 및 핸디 모션 제어 드론 시스템 구현 및 검증)

  • Kim, Youngsoo;Lee, Junbeom;Lee, Chanyoung;Jeon, Hyeri;Kim, Seungpil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.163-169
    • /
    • 2021
  • In this paper, we implemented a deep learning-based automatic object tracking and handy motion control drone system and analyzed the performance of the proposed system. The drone system automatically detects and tracks targets by analyzing images obtained from the drone's camera using deep learning algorithms, consisting of the YOLO, the MobileNet, and the deepSORT. Such deep learning-based detection and tracking algorithms have both higher target detection accuracy and processing speed than the conventional color-based algorithm, the CAMShift. In addition, in order to facilitate the drone control by hand from the ground control station, we classified handy motions and generated flight control commands through motion recognition using the YOLO algorithm. It was confirmed that such a deep learning-based target tracking and drone handy motion control system stably track the target and can easily control the drone.

Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot (이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가)

  • Park, Jae-Hong;Bhan, Wook;Choi, Tae-Young;Kwon, Hyun-Il;Cho, Dong-Il;Kim, Kwang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

Emulation of Anti-alias Filtering in Vision Based Motion Mmeasurement (비전 센서의 앨리어싱 방지 필터링 모방 기법)

  • Kim, Jung-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.18-26
    • /
    • 2011
  • This paper presents a method, Exposure Controlled Temporal Filtering (ECF), applied to visual motion tracking, that can cancel the temporal aliasing of periodic vibrations of cameras and fluctuations in illumination through the control of exposure time. We first present a theoretical analysis of the exposure induced image time integration process and how it samples sensor impingent light that is periodically fluctuating. Based on this analysis we develop a simple method to cancel high frequency vibrations that are temporally aliased onto sampled image sequences and thus to subsequent motion tracking measurements. Simulations and experiments using the 'Center of Gravity' and Normalized Cross-Correlation motion tracking methods were performed on a microscopic motion tracking system to validate the analytical predictions.

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.