• Title/Summary/Keyword: Motion Simulation

Search Result 3,092, Processing Time 0.033 seconds

Establishment of Real-time HILS Environment for Small UAV Using 6 D.O.F Motion Table (6자유도 모션테이블을 이용한 소형 무인항공기용 실시간 HILS 환경 구축)

  • Cha, Hyungkyu;Jeong, Jinseok;Shi, Hayoung;Yoon, Junseok;Kang, Beomsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.326-334
    • /
    • 2019
  • Development of Small UAV using HILS (Hardware In the Loop Simulation) can be effectively used to improve the reliability of UAV (Unmanned Aerial Vehicle) while reducing cost and time. It is also possible to reduce the damage to people or property by simulating the malfunction of the Flight Control Computer (FCC) that may occur during the actual flight. For applying such HILS, a real-time simulation environment capable of providing an environment similar to an actual flight condition is required. In this paper, we constructed a real - time HILS environment for Small UAV using 6 D.O.F motion table. In order to link the 6 D.O.F motion table developed in the previous research with the HILS environment in real time, the motion algorithm was changed from the position control method to the velocity control method. Also, we implemented modeling of inverse kinematics model for command transmission in Matlab $Simulink^{(R)}$ and verified the action of motion table according to the simulation model.

Motion of Stone Skipping Simulation by Physically-based Analysis (물리기반 해석을 통한 물수제비 운동 시뮬레이션)

  • Do, Joo-Young;Ra, Eun-Chul;Kim, Eun-Ju;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • Physically-based simulation modeling is to simulate the real world by using physical laws such as Newton's second law of motion, while other modelings use only geometric Properties. In this paper, we present a real time simulation of stone skipping by using the physically-based modeling. We also describe interaction of a stone on the surface of water, and focus on calculating the path of the stone and the natural phenomena of water The path is decided by velocity of the stone and drag force from the water The motion is recalculated until the stone is immersing into the water surface. Our simulation provides a natural motion of stone skippings in real time. And the motion of stone skippings are generated by give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

Rolling Motion Simulation in the Time Domain and Ship Motion Experiment for Algorithm Verification for Fishing Vessel Capsizing Alarm Systems (어선전복경보시스템 알고리즘 검증을 위한 어선 횡동요 시험 및 시간영역 횡동요 시뮬레이션)

  • Yang, Young-Jun;Kwon, Soo-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.956-964
    • /
    • 2017
  • This study contributes to deepening understand of the characteristics of fishing vessel rolling motions to improve the development of capsizing alarm systems. A time domain rolling motion simulation was performed. In order to verify capsizing alarm systems, it is necessary to carry out experiments assuming a capsizing situation and perform actual fishing vessel measurements, but these tasks are impossible due to the danger of such a situation. However, in many capsizing accidents, a close connection with rolling motion was found. Accordingly, the rolling motion of a fishing boat, which is the core of a fishing vessel capsizing alarm system, has been accurately measured and a time domain based on a rolling motion simulation has been performed. This information was used to verify the algorithm for a capsizing alarm system. Firstly, the characteristics of rolling motion were measured through a motion experiment. For small vessels such as fishing vessels, it was difficult to interpret viscosity due to analytical methods including CFD and potential codes. Therefore, an experiment was carried out focusing on rolling motion and a rolling mode RAO was derived.

Evaluation 4D-CT Simulation used of Motion Organ and Tumor for Respiratory Gated Radiation Therapy (호흡동조방사선치료를 위한 4D-CT simulation을 이용한 동적장기와 종양 움직임 평가)

  • Kim, Seung-Chul;Kim, Min-A
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.395-402
    • /
    • 2015
  • when the radiation therapy of chest and abdomen, evaluation of the tumor motion and the data was used to minimize damage to normal tissues by separating the tumor and normal tissue and maximize tumor therapeutic effect. Lung and liver cancer each 20 patients based on the 50% top phase using 4D-CT simulation and Light speed-16 of shooting equipment 30 ~ 70 % gating phase interval and 0 ~90 % movement in the full phase interval was measured. If the full phase 0 ~ 90% with gating phase 30~70% of tumors in the liver and lung is shown the biggest difference compared to the motion and the size of the GTV was the largest difference in the I(inferior), full phase 0~90% degree of tumor motion only when a relatively large, gating phase to 30~70% of the tumor when the movement has been found that the reduced average 7.1mm. In the 4D-CT simulation comparing the motion value when the full phase 0~90 % and gating phase 30~70 % when the motion value, twice in the gating phase 30~70 % more than full phase 0~90 % showed a small movement value. The exposure to normal tissues, based on the results obtained from the 4D-CT simulation can be significantly alleviated, After treatment will reduce pain and disability in patients with radiation is expected to be able to effective treatment.

Seismic Motion Amplification Characteristics at Artificial Reclaimed Land (인공 매립 지반에서의 지진파 증폭 특성)

  • Kim, Yong-Seong;Moon, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1134-1139
    • /
    • 2005
  • Seismic motion amplification owing to the input motion level at bedrock is one of the important topics to understand various geomaterials behavior. The extremely valuable borehole records at Port Island were obtained during the 1995 Hyogoken Nanbu Earthquake and also before and after the main event. In this study, the seismic motion amplification at the soft reclaimed ground was discussed. Comparison of measured records with numerical simulation results were made with focus on seismic motion amplification characteristics at the soft reclaimed ground.

  • PDF

Gaits Control for Skating Motion with Nonholonomic Constraint (논홀로노믹 구속을 고려한 스케이트 운동의 연속적인 생성방법)

  • Hwang, Chang-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.59-67
    • /
    • 2009
  • This paper addresses the control method for skating motion with a nonholonomic constraint. In order to generate a human-like skating motion, the behaviors of motion are distinctively analyzed into transient state and steady state. A close investigation of the behaviors evolved the characteristic of successive motions with transient state and steady state. Simulation results were intuitively comprehensible, and the effectiveness of control method was demonstrated for skating motion.

Effects of Motion Estimation Accuracy on the Motion compensated Coding (움직임 추정 정확도가 움직임 보상 부호화에 미치는 영향)

  • 김린철;이상욱;김재균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.327-334
    • /
    • 1988
  • In this paper, the performance of PRA (pel recurdive algorithm) and BMA(block matching algorithm), which are the most well-known motion estimation techniques, is compared and the effects of the motion estimation accuracy on the motion compensated coding are described. Results of computer simulation on the real images indicate that the TSS (three step search), which is one of the BMA,is slightly better than the PRA in terms of the accuracy however, the required bit rate is 6.6-8.2 Kbps higher that of the PRA because the TSS requires a transmission of motion estimation vectors.

  • PDF

Predictive motion estimation algorithm using spatio-temporal correlation of motion vector (움직임 벡터의 시공간적인 상관성을 이용한 예측 움직임 추정 기법)

  • 김영춘;정원식;김중곤;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.64-72
    • /
    • 1996
  • In this paper, we propose predictive motion estimatin algorithm which can predict motion without additional side information considering spatio-tempral correlatio of motion vector. This method performs motion prediction of current block using correlation of the motion vector for two spatially adjacent blocks and a temporally adjacent block. Form predicted motion, the position of searhc area is determined. Then in this searhc area, we estimate motion vector of current block using block matching algoirthm. Considering spatial an temporal correlation of motion vector, the proposed method can predict motion precisely much more. Especially when the motion of objects is rapid, this method can estimate motion more precisely without reducing block size or increasing search area. Futhrmore, the proposed method has computation time the same as conventional block matching algorithm. And as it predicts motion from adjacent blocks, it does not require additional side information for adjacent block. Computer simulation results show that motion estimation of proposed method is more precise than that of conventioanl method.

  • PDF

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF